Due to the limited thermoelectric(TE)performance of polymer materials and the inherent rigidity of inorganic materials,developing low-cost,highly flexible,and high-performance materials for flexible thermocouple senso...Due to the limited thermoelectric(TE)performance of polymer materials and the inherent rigidity of inorganic materials,developing low-cost,highly flexible,and high-performance materials for flexible thermocouple sensors(FTCSs)remains challenging.Additionally,dual-mode(contact/non-contact)temperature monitoring in FTCSs is underexplored.This study addresses these issues by using p-type(PEDOT:PSS/CNTs,2:1)and n-type(MXene/Bi_(2)Se_(3),2:1)TE materials applied via screen printing and compression onto a PPSN substrate(paper/PDMS/Si_(3)N_(4)).The resulting FTCSs exhibit excellent TE properties:electrical conductivities of 61,197.88 S/m(n-type)and 55,697.77 S/m(p-type),Seebeck coefficients of 39.88μV/K and-29.45μV/K,and power factors(PFs)of 97.66μW/mK^(2)and 55.64μW/mK^(2),respectively.In contact mode,the sensor shows high-temperature sensitivity(S_(T)=379.5μV/℃),a broad detection range(20-200℃),high resolution(~0.3℃),and fast response(~12.6 ms).In non-contact mode,it maintains good sensitivity(S_(Tmax)=52.67μV/℃),a broad detection range,high resolution(~0.8℃),and even faster response(~9.8 ms).The sensor also demonstrates strong mechanical durability,maintaining stable performance after 1000 bending cycles.When applied to dual-mode temperature monitoring in wearable devices and lithium batteries,the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples,indicating significant potential for advanced medical monitoring systems and smart home technologies.展开更多
基金supported by National Key Research and Development Program of China(2022YFB3205903)Anhui Province Science and Technology Innovation Key Project(202423k09020047)+1 种基金the Natural Science Foundation of China(No.2201187)Major R&D Innovation Project of Anhui Provincial Development and Reform Commission(JZ2021AFKJ0050).
文摘Due to the limited thermoelectric(TE)performance of polymer materials and the inherent rigidity of inorganic materials,developing low-cost,highly flexible,and high-performance materials for flexible thermocouple sensors(FTCSs)remains challenging.Additionally,dual-mode(contact/non-contact)temperature monitoring in FTCSs is underexplored.This study addresses these issues by using p-type(PEDOT:PSS/CNTs,2:1)and n-type(MXene/Bi_(2)Se_(3),2:1)TE materials applied via screen printing and compression onto a PPSN substrate(paper/PDMS/Si_(3)N_(4)).The resulting FTCSs exhibit excellent TE properties:electrical conductivities of 61,197.88 S/m(n-type)and 55,697.77 S/m(p-type),Seebeck coefficients of 39.88μV/K and-29.45μV/K,and power factors(PFs)of 97.66μW/mK^(2)and 55.64μW/mK^(2),respectively.In contact mode,the sensor shows high-temperature sensitivity(S_(T)=379.5μV/℃),a broad detection range(20-200℃),high resolution(~0.3℃),and fast response(~12.6 ms).In non-contact mode,it maintains good sensitivity(S_(Tmax)=52.67μV/℃),a broad detection range,high resolution(~0.8℃),and even faster response(~9.8 ms).The sensor also demonstrates strong mechanical durability,maintaining stable performance after 1000 bending cycles.When applied to dual-mode temperature monitoring in wearable devices and lithium batteries,the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples,indicating significant potential for advanced medical monitoring systems and smart home technologies.