期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
1
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(FOA) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
在线阅读 下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
2
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting fruit fly optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
在线阅读 下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
3
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm Adaptive Step Local Optimum Convergence Speed
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model 被引量:1
4
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms fruit fly optimization algorithm
在线阅读 下载PDF
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:3
5
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) Path planning
在线阅读 下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
6
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
在线阅读 下载PDF
An improved fruit fly optimization algorithm for solving traveling salesman problem 被引量:6
7
作者 Lan HUANG Gui-chao WANG +1 位作者 Tian BAI Zhe WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第10期1525-1533,共9页
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat... The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision. 展开更多
关键词 Traveling salesman problem fruit fly optimization algorithm Elimination mechanism Vision search OPERATOR
原文传递
An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization 被引量:3
8
作者 LIU Ao DENG Xudong +2 位作者 REN Liang LIU Ying LIU Bo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第2期634-656,共23页
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement... As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate. 展开更多
关键词 EVOLUTIONARY algorithms fruit fly optimization function optimization META-HEURISTICS
原文传递
Performance Prediction of Switched Reluctance Motor using Improved Generalized Regression Neural Networks for Design Optimization 被引量:10
9
作者 Zhu Zhang Shenghua Rao Xiaoping Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第4期371-376,共6页
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre... Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN. 展开更多
关键词 fruit fly optimization algorithm generalized regression neural networks switched reluctance motor
在线阅读 下载PDF
基于果蝇协同算法求解双目标混装柔性作业车间分批调度问题
10
作者 郭晨 曾嘉怡 杨志杰 《计算机应用研究》 北大核心 2025年第7期2072-2079,共8页
对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用... 对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用计算最佳分批策略,内层计算策略下的最优调度方案并转换为适应度值反馈给外层,以此兼顾算法优势提高解的性能。其中果蝇协同搜索算法改进传统果蝇算法,加入协同搜索过程增强优化,采用改进的优先操作交叉和多点保存交叉,分别实现作业顺序搜索和机器分配。最后结合医疗器械企业实际生成10组算例进行广泛实验,与多种相关已有算法对比,果蝇协同搜索算法收敛速度快,前沿解分布均匀,表现更为突出。该研究为解决混装柔性作业车间分批调度问题提供新的有效方案极具实用价值。 展开更多
关键词 混装柔性作业车间 双层联动 分批策略 果蝇协同搜索算法
在线阅读 下载PDF
基于车辆与无人机协同的巡检任务分配与路径规划算法
11
作者 李晓辉 刘小飞 +3 位作者 孙炜桐 赵毅 董媛 靳引利 《山东大学学报(工学版)》 北大核心 2025年第5期101-109,共9页
为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及... 为了研究地面车辆与无人机在巡检过程中的最佳任务分配策略及路径规划问题,提出一种两阶段混合式启发算法——改进自适应大邻域搜索(improved adaptive large neighborhood search,IALNS)算法。第一阶段根据待巡检节点的不同需求等级及距离等因素,利用聚类算法对目标节点进行划分;第二阶段采用一种混合式启发算法解决路线调度问题,增加6种新的局部优化算子,引入节点重分配策略,经过迭代得到成本最小的车辆与无人机协同混合路线。对所提算法解和其他算法解进行测试和比较分析,试验数据表明,IALNS算法在解决车辆与无人机协同巡检问题时具有显著优势。 展开更多
关键词 路径规划 车辆与无人机协同模式 聚类算法 自适应大邻域搜索 局部优化
原文传递
船载无人机协同搜索海洋垃圾路径优化
12
作者 刘改革 段刚 邱泽阳 《上海海事大学学报》 北大核心 2025年第3期52-59,共8页
为给海洋垃圾清理提供准确的海面信息,使用船载无人机对存在海洋漂浮垃圾但位置和数量未知的区域进行识别定位。由于海洋垃圾的位置会受风和洋流的影响而移动,需为研究区域设置时间窗。考虑到无人机续航时间有限,船舶在协同搜索时为无... 为给海洋垃圾清理提供准确的海面信息,使用船载无人机对存在海洋漂浮垃圾但位置和数量未知的区域进行识别定位。由于海洋垃圾的位置会受风和洋流的影响而移动,需为研究区域设置时间窗。考虑到无人机续航时间有限,船舶在协同搜索时为无人机提供电池更换服务。基于无人机摄像头拍照范围,引入网格划分的方法处理研究区域,生成航路点。为实现在优化船舶和无人机路径的同时总成本最小化,提出一种混合变邻域搜索算法,在设计4种邻域操作的基础上,根据Metropolis准则对新解进行筛选,并通过邻域搜索操作加速寻优。选择东海附近的一片海域进行实例研究,结果验证了算法的有效性。对无人机续航时间分析可得,使用续航时间更久的无人机更有利于降低总成本。 展开更多
关键词 海洋垃圾搜索 船载无人机 无人机续航时间 协同路径优化 混合变邻域搜索算法
在线阅读 下载PDF
A multi-dimensional tabu search algorithm for the optimization of process planning 被引量:6
13
作者 LIAN KunLei ZHANG ChaoYong +1 位作者 SHAO XinYu ZENG YaoHui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3211-3219,共9页
Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and th... Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and the machining parameters of machine, tool and tool access direction (TAD) for each operation. This paper proposes a novel optimization strategy for process planning that considers different dimensions of the problem in parallel. A multi-dimensional tabu search (MDTS) algo-rithm based on this strategy is developed to optimize the four dimensions of a process plan, namely, operation sequence (OperSeq), machine sequence (MacSeq), tool sequence (TooISeq) and tool approach direction sequence (TADSeq), sequentially and iteratively. In order to improve its efficiency and stability, tabu search, which is incorporated into the proposed MDTS al- gorithm, is used to optimize each component of a process plan, and some neighbourhood strategies for different components are presented for this tabu search algorithm. The proposed MDTS algorithm is employed to test four parts with different numbers of operations taken from the literature and compared with the existing algorithms like genetic algorithm (GA), simulated annealing (SA), tabu search (TS) and particle swarm optimization (PSO). Experimental results show that the developed algo-rithm outperforms these algorithms in terms of solution quality and efficiency. 展开更多
关键词 process planning cooperative tabu search genetic algorithm simulated annealing particle swarm optimization
原文传递
基于合作博弈与动态分时电价的电动汽车有序充放电策略 被引量:1
14
作者 舒征宇 刘文灿 +2 位作者 李黄强 王灿 姚钦 《电力工程技术》 北大核心 2025年第3期179-187,共9页
随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性... 随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性,无差别对待电动汽车的充放电调度,只会徒增电网侧的供电压力。为解决此类问题,文中首先在合作博弈的框架下,考虑电动汽车代理商与电动汽车用户之间的博弈关系,提出电价指导用户充电选择的电动汽车充电调度优化方法,并搭建电动汽车的动态分时优化充放电仿真模型。然后,在求解过程中,利用改进的果蝇优化算法(fruit fly optimization algorithm,FOA)对电动汽车充电时段进行规划。最后,通过算例仿真分析验证该策略的可行性与经济性。与现有的固定电价策略相比,所提策略不仅可以有效减小电网负荷的峰谷差,避免负荷“新高峰”,而且可以提高代理商和电动汽车用户的收益。 展开更多
关键词 充电选择 有序充放电 改进的果蝇优化算法(FOA) 动态分时电价 合作博弈收益 削峰填谷
在线阅读 下载PDF
基于二维正态分布的FOA算法
15
作者 信成涛 张书茂 +1 位作者 李转运 刘闰豪 《科技创新与应用》 2025年第22期42-46,共5页
果蝇优化算法(Fruit Fly Optimization Algorithm)是一种群体智能算法,其灵感来源于果蝇群体觅食行为。该算法通过模拟果蝇利用敏锐的嗅觉搜索食物源及利用视觉飞向食物位置的过程,实现对优化问题解空间的高效搜索。FOA算法具有原理简... 果蝇优化算法(Fruit Fly Optimization Algorithm)是一种群体智能算法,其灵感来源于果蝇群体觅食行为。该算法通过模拟果蝇利用敏锐的嗅觉搜索食物源及利用视觉飞向食物位置的过程,实现对优化问题解空间的高效搜索。FOA算法具有原理简单、易于实现、参数较少等优点,在函数优化、机器学习、图像处理、工程设计等多个领域展现出了良好的应用潜力,为解决复杂的实际优化问题提供了一种有效的新途径,然而其在收敛速度和求解精度方面仍存在一定的改进空间,二维正态分布果蝇优化算法(Fruit Fly Optimization Algorithm based on Two-Dimensional Normal Distribution,简称2D-NDFOA)是一种结合了果蝇优化算法与正态分布特性的优化策略,提高果蝇群体的全局搜索能力。 展开更多
关键词 果蝇优化算法 优化策略 正态分布 收敛速度 全局搜索
在线阅读 下载PDF
Temperature Prediction of Laser Directed Energy Deposition Based on ASSFOA-GRNN Model
16
作者 Li Dianqi Chai Yuanxin +1 位作者 Miao Liguo Tang Jinghu 《稀有金属材料与工程》 北大核心 2025年第10期2470-2482,共13页
To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical s... To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical simulation was proposed to predict the temperature during LDED.A finite element(FE)thermal analysis model was established.The model's accuracy was verified through in-situ monitoring experiments,and a basic database for the predictive model was obtained based on FE simulations.Temperature prediction was performed using a generalized regression neural network(GRNN).To reduce dependence on human experience during GRNN parameter tuning and to enhance model prediction performance,an improved adaptive step-size fruit fly optimization algorithm(ASSFOA)was introduced.Finally,the prediction performance of ASSFOA-GRNN model was compared with that of back-propagation neural network model,GRNN model,and fruit fly optimization algorithm(FOA)-GRNN model.The evaluation metrics included the root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R^(2)),training time,and prediction time.Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE,MAE,and R^(2) indexes.Although its prediction efficiency is slightly lower than that of the FOA-GRNN model,its prediction accuracy is significantly better than that of the other models.This proposed method can be used for temperature prediction in LDED process and also provide a reference for similar methods. 展开更多
关键词 laser directed energy deposition temperature prediction FE simulation generalized regression neural network fruit fly optimization algorithm
原文传递
果蝇算法的改进及其在桁架结构优化中的应用
17
作者 阎震 郭颖 +1 位作者 何小军 张雅静 《河北科技师范学院学报》 2025年第1期58-66,共9页
为加快果蝇算法的寻优速度和质量;首先将淘汰因子引入果蝇算法(FOA),改进后的果蝇算法较一般果蝇算法能迅速找到最优解;随后将权重和禁忌搜索引入果蝇算法中,使改进后的算法能够动态调整搜索步长,提高搜索的精确度。最后将改进后的果蝇... 为加快果蝇算法的寻优速度和质量;首先将淘汰因子引入果蝇算法(FOA),改进后的果蝇算法较一般果蝇算法能迅速找到最优解;随后将权重和禁忌搜索引入果蝇算法中,使改进后的算法能够动态调整搜索步长,提高搜索的精确度。最后将改进后的果蝇算法(IFOA)应用于管式栈桥的结构优化中,以栈桥结构管的最小质量为目标函数建立优化模型,并与其他学者进行比较,证明改进后的果蝇算法(IFOA)具有更好的性能。 展开更多
关键词 果蝇优化算法 禁忌搜索条件 桁架结构优化
在线阅读 下载PDF
动态双子群协同进化果蝇优化算法 被引量:39
18
作者 韩俊英 刘成忠 王联国 《模式识别与人工智能》 EI CSCD 北大核心 2013年第11期1057-1067,共11页
针对基本果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的缺点,提出动态双子群协同进化果蝇优化算法(DDSCFOA).该算法在运行过程中根据群体的进化水平,动态地将整个种群划分为先进子群和后进子群;先进子群采用混沌算法在局部最优解邻... 针对基本果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的缺点,提出动态双子群协同进化果蝇优化算法(DDSCFOA).该算法在运行过程中根据群体的进化水平,动态地将整个种群划分为先进子群和后进子群;先进子群采用混沌算法在局部最优解邻域内进行精细的局部搜索,后进子群采用基本FOA算法进行全局搜索,较好地平衡局部搜索能力和全局搜索能力;两个子群间的信息通过全局最优个体的更新和种群个体的重组进行交换.DDSCFOA算法能跳出局部极值,避免陷入局部最优.仿真结果表明,动态双子群协同进化的策略有效可行,DDSCFOA算法比基本FOA算法具有更好的优化性能. 展开更多
关键词 果蝇优化算法 群体智能 协同进化 早熟收敛
在线阅读 下载PDF
基于改进果蝇算法与最小二乘支持向量机的轧制力预测算法研究 被引量:12
19
作者 杨景明 郭秋辰 +3 位作者 孙浩 马明明 车海军 赵新秋 《计量学报》 CSCD 北大核心 2016年第5期505-508,共4页
铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采... 铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采用了分组并行搜索的策略,进而提出一种基于改进FOA—LSSVM的轧制力智能预报方法。将该方法用于铝热连轧现场数据的仿真实验,结果表明样本预测误差在10%以内,其中84%的样本误差在5%以内,精度优于传统模型。 展开更多
关键词 计量学 轧制力预测 最小二乘支持向量机 果蝇算法
在线阅读 下载PDF
果蝇优化算法研究综述 被引量:55
20
作者 王林 吕盛祥 曾宇容 《控制与决策》 EI CSCD 北大核心 2017年第7期1153-1162,共10页
作为一种新兴的群体智能算法,果蝇优化算法(FOA)因其简单有效而在诸多领域得到成功应用.分析FOA的搜索原理和优缺点,围绕目前的改进和相关应用进行综述.重点讨论FOA改进策略,包括改进搜索半径,改进候选解的生成机制、多种群策略等,以及... 作为一种新兴的群体智能算法,果蝇优化算法(FOA)因其简单有效而在诸多领域得到成功应用.分析FOA的搜索原理和优缺点,围绕目前的改进和相关应用进行综述.重点讨论FOA改进策略,包括改进搜索半径,改进候选解的生成机制、多种群策略等,以及FOA在复杂函数优化、组合优化和参数优化等方面的应用.最后给出FOA在算法改进和实际应用方面研究的新思路. 展开更多
关键词 果蝇优化算法 搜索机制 搜索改进 复杂问题优化
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部