期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:2
1
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) Path planning
在线阅读 下载PDF
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model
2
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement Machine learning Teacher-student relationships Swarm intelligence algorithms fruit fly optimization algorithm
在线阅读 下载PDF
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
3
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(FOA) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
在线阅读 下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
4
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting fruit fly optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
在线阅读 下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
5
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm Adaptive Step Local Optimum Convergence Speed
在线阅读 下载PDF
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
6
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
在线阅读 下载PDF
基于果蝇协同算法求解双目标混装柔性作业车间分批调度问题
7
作者 郭晨 曾嘉怡 杨志杰 《计算机应用研究》 北大核心 2025年第7期2072-2079,共8页
对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用... 对于多产品混装柔性生产模式,研究生产、运输、库存、装配各环节密切联系的混装柔性作业车间分批调度问题。以最小化最大完工时间和总成本为目标建立模型,提出双层联动的多目标混合算法:多目标粒子群算法联动果蝇协同搜索算法,外层使用计算最佳分批策略,内层计算策略下的最优调度方案并转换为适应度值反馈给外层,以此兼顾算法优势提高解的性能。其中果蝇协同搜索算法改进传统果蝇算法,加入协同搜索过程增强优化,采用改进的优先操作交叉和多点保存交叉,分别实现作业顺序搜索和机器分配。最后结合医疗器械企业实际生成10组算例进行广泛实验,与多种相关已有算法对比,果蝇协同搜索算法收敛速度快,前沿解分布均匀,表现更为突出。该研究为解决混装柔性作业车间分批调度问题提供新的有效方案极具实用价值。 展开更多
关键词 混装柔性作业车间 双层联动 分批策略 果蝇协同搜索算法
在线阅读 下载PDF
船载无人机协同搜索海洋垃圾路径优化
8
作者 刘改革 段刚 邱泽阳 《上海海事大学学报》 北大核心 2025年第3期52-59,共8页
为给海洋垃圾清理提供准确的海面信息,使用船载无人机对存在海洋漂浮垃圾但位置和数量未知的区域进行识别定位。由于海洋垃圾的位置会受风和洋流的影响而移动,需为研究区域设置时间窗。考虑到无人机续航时间有限,船舶在协同搜索时为无... 为给海洋垃圾清理提供准确的海面信息,使用船载无人机对存在海洋漂浮垃圾但位置和数量未知的区域进行识别定位。由于海洋垃圾的位置会受风和洋流的影响而移动,需为研究区域设置时间窗。考虑到无人机续航时间有限,船舶在协同搜索时为无人机提供电池更换服务。基于无人机摄像头拍照范围,引入网格划分的方法处理研究区域,生成航路点。为实现在优化船舶和无人机路径的同时总成本最小化,提出一种混合变邻域搜索算法,在设计4种邻域操作的基础上,根据Metropolis准则对新解进行筛选,并通过邻域搜索操作加速寻优。选择东海附近的一片海域进行实例研究,结果验证了算法的有效性。对无人机续航时间分析可得,使用续航时间更久的无人机更有利于降低总成本。 展开更多
关键词 海洋垃圾搜索 船载无人机 无人机续航时间 协同路径优化 混合变邻域搜索算法
在线阅读 下载PDF
基于二维正态分布的FOA算法
9
作者 信成涛 张书茂 +1 位作者 李转运 刘闰豪 《科技创新与应用》 2025年第22期42-46,共5页
果蝇优化算法(Fruit Fly Optimization Algorithm)是一种群体智能算法,其灵感来源于果蝇群体觅食行为。该算法通过模拟果蝇利用敏锐的嗅觉搜索食物源及利用视觉飞向食物位置的过程,实现对优化问题解空间的高效搜索。FOA算法具有原理简... 果蝇优化算法(Fruit Fly Optimization Algorithm)是一种群体智能算法,其灵感来源于果蝇群体觅食行为。该算法通过模拟果蝇利用敏锐的嗅觉搜索食物源及利用视觉飞向食物位置的过程,实现对优化问题解空间的高效搜索。FOA算法具有原理简单、易于实现、参数较少等优点,在函数优化、机器学习、图像处理、工程设计等多个领域展现出了良好的应用潜力,为解决复杂的实际优化问题提供了一种有效的新途径,然而其在收敛速度和求解精度方面仍存在一定的改进空间,二维正态分布果蝇优化算法(Fruit Fly Optimization Algorithm based on Two-Dimensional Normal Distribution,简称2D-NDFOA)是一种结合了果蝇优化算法与正态分布特性的优化策略,提高果蝇群体的全局搜索能力。 展开更多
关键词 果蝇优化算法 优化策略 正态分布 收敛速度 全局搜索
在线阅读 下载PDF
基于合作博弈与动态分时电价的电动汽车有序充放电策略
10
作者 舒征宇 刘文灿 +2 位作者 李黄强 王灿 姚钦 《电力工程技术》 北大核心 2025年第3期179-187,共9页
随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性... 随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性,无差别对待电动汽车的充放电调度,只会徒增电网侧的供电压力。为解决此类问题,文中首先在合作博弈的框架下,考虑电动汽车代理商与电动汽车用户之间的博弈关系,提出电价指导用户充电选择的电动汽车充电调度优化方法,并搭建电动汽车的动态分时优化充放电仿真模型。然后,在求解过程中,利用改进的果蝇优化算法(fruit fly optimization algorithm,FOA)对电动汽车充电时段进行规划。最后,通过算例仿真分析验证该策略的可行性与经济性。与现有的固定电价策略相比,所提策略不仅可以有效减小电网负荷的峰谷差,避免负荷“新高峰”,而且可以提高代理商和电动汽车用户的收益。 展开更多
关键词 充电选择 有序充放电 改进的果蝇优化算法(FOA) 动态分时电价 合作博弈收益 削峰填谷
在线阅读 下载PDF
果蝇算法的改进及其在桁架结构优化中的应用
11
作者 阎震 郭颖 +1 位作者 何小军 张雅静 《河北科技师范学院学报》 2025年第1期58-66,共9页
为加快果蝇算法的寻优速度和质量;首先将淘汰因子引入果蝇算法(FOA),改进后的果蝇算法较一般果蝇算法能迅速找到最优解;随后将权重和禁忌搜索引入果蝇算法中,使改进后的算法能够动态调整搜索步长,提高搜索的精确度。最后将改进后的果蝇... 为加快果蝇算法的寻优速度和质量;首先将淘汰因子引入果蝇算法(FOA),改进后的果蝇算法较一般果蝇算法能迅速找到最优解;随后将权重和禁忌搜索引入果蝇算法中,使改进后的算法能够动态调整搜索步长,提高搜索的精确度。最后将改进后的果蝇算法(IFOA)应用于管式栈桥的结构优化中,以栈桥结构管的最小质量为目标函数建立优化模型,并与其他学者进行比较,证明改进后的果蝇算法(IFOA)具有更好的性能。 展开更多
关键词 果蝇优化算法 禁忌搜索条件 桁架结构优化
在线阅读 下载PDF
An improved fruit fly optimization algorithm for solving traveling salesman problem 被引量:6
12
作者 Lan HUANG Gui-chao WANG +1 位作者 Tian BAI Zhe WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第10期1525-1533,共9页
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat... The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision. 展开更多
关键词 Traveling salesman problem fruit fly optimization algorithm Elimination mechanism Vision search OPERATOR
原文传递
An Inverse Power Generation Mechanism Based Fruit Fly Algorithm for Function Optimization 被引量:3
13
作者 LIU Ao DENG Xudong +2 位作者 REN Liang LIU Ying LIU Bo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第2期634-656,共23页
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement... As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate. 展开更多
关键词 EVOLUTIONARY algorithms fruit fly optimization function optimization META-HEURISTICS
原文传递
Performance Prediction of Switched Reluctance Motor using Improved Generalized Regression Neural Networks for Design Optimization 被引量:10
14
作者 Zhu Zhang Shenghua Rao Xiaoping Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第4期371-376,共6页
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre... Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN. 展开更多
关键词 fruit fly optimization algorithm generalized regression neural networks switched reluctance motor
在线阅读 下载PDF
非合作博弈背景下基于BSA的配电网优化重构 被引量:2
15
作者 李奇 艾钰璇 +2 位作者 孙彩 邱宜彬 陈维荣 《西南交通大学学报》 EI CSCD 北大核心 2024年第2期438-446,共9页
为缓解分布式电源大规模接入对配电网安全稳定运行的影响,提出一种考虑分布式电源输出功率的不确定性的有源配电网优化重构方法.首先,采用非合作博弈理论研究电网调度人员与“大自然”之间的博弈关系,将配电网系统中光伏单元的不确定性... 为缓解分布式电源大规模接入对配电网安全稳定运行的影响,提出一种考虑分布式电源输出功率的不确定性的有源配电网优化重构方法.首先,采用非合作博弈理论研究电网调度人员与“大自然”之间的博弈关系,将配电网系统中光伏单元的不确定性视为“大自然”博弈方;其次,以有功网损、负荷均衡度、电压偏差最小为目标函数,建立有源配电网优化重构模型,通过回溯搜索算法(backtracking search algorithm,BSA)进行迭代求解,得到最优重构方案;最后,在IEEE33节点系统进行仿真分析,验证模型的正确性及求解算法的有效性.研究结果表明,相较传统重构方法,本文方法更充分考虑了分布式电源输出功率的不确定性,并且在最恶劣的情况发生时,得到的重构策略能够使配电网系统的有功网损、负荷均衡度、电压偏差指标分别降低0.31%、0.59%、0.48%. 展开更多
关键词 配电网 优化重构 不确定性 非合作博弈 回溯搜索算法
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:3
16
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子群优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:7
17
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 群智能算法 滚动时域优化 差分进化粒子群混合算法
在线阅读 下载PDF
基于混合果蝇算法的桩锚支护深基坑临界滑面搜索 被引量:1
18
作者 马泽宁 沙成满 路明浩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期120-128,共9页
进行基坑整体稳定性分析常采用极限平衡法,但仍然需要依据经验试算一系列滑面,将安全系数最小的滑面确定为最危险滑面.针对此问题,提出将果蝇优化(FOA)算法与禁忌搜索(TS)算法融合,提出自适应步长的混合果蝇优化算法(HFOA),以克服基本... 进行基坑整体稳定性分析常采用极限平衡法,但仍然需要依据经验试算一系列滑面,将安全系数最小的滑面确定为最危险滑面.针对此问题,提出将果蝇优化(FOA)算法与禁忌搜索(TS)算法融合,提出自适应步长的混合果蝇优化算法(HFOA),以克服基本果蝇算法局部寻优精度不高且易陷入局部最优的缺点,确保获得全局最优解,并结合简化Bishop算法用于临界滑面的搜索.在Matlab中编程实现该算法,通过与6种启发式算法进行对比,结果表明,HFOA适用于均质土悬臂支护基坑、成层土和含软弱夹层的桩锚支护基坑,相较于遗传算法等6种算法具有更快的收敛速度、更高的收敛精度和可靠性,为深基坑临界滑动面搜索提供了一种新的求解策略. 展开更多
关键词 深基坑 整体稳定性 果蝇优化算法 禁忌搜索算法 最小安全系数
在线阅读 下载PDF
基于γ随机搜索策略的无人机集群海上任务分配
19
作者 吴秋实 郭杰 +3 位作者 康振亮 张宝超 王浩凝 唐胜景 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第12期3872-3883,共12页
针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引... 针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引入无人机集群任务分配问题,建立契合作战场景的无人机集群任务分配作战模型;基于粒子编码矩阵,设计均衡搜索策略、γ随机搜索策略、分阶段自适应参数,提出基于γ随机搜索策略的改进离散粒子群算法,解决离散粒子群算法易陷入局部最优造成未成熟收敛的问题。仿真结果表明:针对所建立的符合海上作战特点的无人机集群多目标任务分配优化模型,所提算法可有效解决无人机集群多目标任务分配问题,所提改进策略提高了算法的收敛速度与算法精度。 展开更多
关键词 无人机 协同任务分配 离散粒子群算法 随机搜索策略 均衡搜索策略
原文传递
A multi-dimensional tabu search algorithm for the optimization of process planning 被引量:6
20
作者 LIAN KunLei ZHANG ChaoYong +1 位作者 SHAO XinYu ZENG YaoHui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3211-3219,共9页
Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and th... Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and the machining parameters of machine, tool and tool access direction (TAD) for each operation. This paper proposes a novel optimization strategy for process planning that considers different dimensions of the problem in parallel. A multi-dimensional tabu search (MDTS) algo-rithm based on this strategy is developed to optimize the four dimensions of a process plan, namely, operation sequence (OperSeq), machine sequence (MacSeq), tool sequence (TooISeq) and tool approach direction sequence (TADSeq), sequentially and iteratively. In order to improve its efficiency and stability, tabu search, which is incorporated into the proposed MDTS al- gorithm, is used to optimize each component of a process plan, and some neighbourhood strategies for different components are presented for this tabu search algorithm. The proposed MDTS algorithm is employed to test four parts with different numbers of operations taken from the literature and compared with the existing algorithms like genetic algorithm (GA), simulated annealing (SA), tabu search (TS) and particle swarm optimization (PSO). Experimental results show that the developed algo-rithm outperforms these algorithms in terms of solution quality and efficiency. 展开更多
关键词 process planning cooperative tabu search genetic algorithm simulated annealing particle swarm optimization
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部