Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis w...Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis which is usually defined as an increasing of the scalar gradient. In this paper, the characteristic features of air flow with initial imbalance between the wind and the density fields are studied. Much attention is paid on the condition for the formation of discontinuity and its time scale. It is found that the initial distribution of density plays an important role in the formation of the discontinuity which happens in short time duration.展开更多
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The la...In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.展开更多
This paper is concerned with the global exponential stability of time periodic traveling fronts of reaction-advection-diffusion equations with time periodic bistable nonlinearity in infinite cylinders. It is well know...This paper is concerned with the global exponential stability of time periodic traveling fronts of reaction-advection-diffusion equations with time periodic bistable nonlinearity in infinite cylinders. It is well known that such traveling fronts exist and are asymptotically stable. In this paper, we further show that such fronts are globally exponentially stable. The main difficulty is to construct appropriate supersolutions and subsolutions.展开更多
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eu...We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.展开更多
Purpose: Research fronts build on recent work, but using times cited as a traditional indicator to detect research fronts will inevitably result in a certain time lag. This study attempts to explore the effects of us...Purpose: Research fronts build on recent work, but using times cited as a traditional indicator to detect research fronts will inevitably result in a certain time lag. This study attempts to explore the effects of usage count as a new indicator to detect research fronts in shortening the time lag of classic indicators in research fronts detection. Design/methodology/approach: An exploratory study was conducted where the new indicator "usage count" was compared to the traditional citation count, "times cited," in detecting research fronts of the regenerative medicine domain. An initial topic search of the term "regenerative medicine" returned 10,553 records published between 2000 and 2015 in the Web of Science (WoS). We first ranked these records with usage count and times cited, respectively, and selected the top 2,000 records for each. We then performed a co-citation analysis in order to obtain the citing papers of the co-citation clusters as the research fronts. Finally, we compared the average publication year of the citing papers as well as the mean cited year of the co-citation clusters. Findings: The citing articles detected by usage count tend to be published more recently compared with times cited within the same research front. Moreover, research fronts detected by usage count tend to be within the last two years, which presents a higher immediacy and real-time feature compared to times cited. There is approximately a three-year time span among the mean cited years (known as "intellectual base") of all clusters generated by usage count and this figure is about four years in the network of times cited. In comparison to times cited, usage count is a dynamic and instant indicator. Research limitations: We are trying to find the cutting-edge research fronts, but those generated based on co-citations may refer to the hot research fronts. The usage count of older highly cited papers was not taken into consideration, because the usage count indicator released by WoS only reflects usage logs after February 2013. Practical implications: The article provides a new perspective on using usage count as a new indicator to detect research fronts.Originality/value: Usage count can greatly shorten the time lag in research fronts detection, which would be a promising complementary indicator in detection of the latest research fronts.展开更多
文摘Observational study shows that, in some cases, the frontal structure displays the features of gravitative flows. It seems that the formation of discontinuity is an important problem in the study of the frontogenesis which is usually defined as an increasing of the scalar gradient. In this paper, the characteristic features of air flow with initial imbalance between the wind and the density fields are studied. Much attention is paid on the condition for the formation of discontinuity and its time scale. It is found that the initial distribution of density plays an important role in the formation of the discontinuity which happens in short time duration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872222 and 50921063)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110191110037)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CDJXS11240011 and CDJXS10241103)
文摘In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
基金supported by National Natural Science Foundation of China(11401134)China Postdoctoral Science Foundation Funded Project(2012M520716)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2014063)
文摘This paper is concerned with the global exponential stability of time periodic traveling fronts of reaction-advection-diffusion equations with time periodic bistable nonlinearity in infinite cylinders. It is well known that such traveling fronts exist and are asymptotically stable. In this paper, we further show that such fronts are globally exponentially stable. The main difficulty is to construct appropriate supersolutions and subsolutions.
基金supported by the National Natural Science Foundation of China(Grant No.11572062)the Fundamental Research Funds for the Central Universities,China(Grant No.CDJZR13248801)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13043)Key Laboratory of Functional Crystals and Laser Technology,TIPCChinese Academy of Sciences
文摘We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.
基金supported by the National Social Science Foundation of China(Grant No.:14BTQ030)
文摘Purpose: Research fronts build on recent work, but using times cited as a traditional indicator to detect research fronts will inevitably result in a certain time lag. This study attempts to explore the effects of usage count as a new indicator to detect research fronts in shortening the time lag of classic indicators in research fronts detection. Design/methodology/approach: An exploratory study was conducted where the new indicator "usage count" was compared to the traditional citation count, "times cited," in detecting research fronts of the regenerative medicine domain. An initial topic search of the term "regenerative medicine" returned 10,553 records published between 2000 and 2015 in the Web of Science (WoS). We first ranked these records with usage count and times cited, respectively, and selected the top 2,000 records for each. We then performed a co-citation analysis in order to obtain the citing papers of the co-citation clusters as the research fronts. Finally, we compared the average publication year of the citing papers as well as the mean cited year of the co-citation clusters. Findings: The citing articles detected by usage count tend to be published more recently compared with times cited within the same research front. Moreover, research fronts detected by usage count tend to be within the last two years, which presents a higher immediacy and real-time feature compared to times cited. There is approximately a three-year time span among the mean cited years (known as "intellectual base") of all clusters generated by usage count and this figure is about four years in the network of times cited. In comparison to times cited, usage count is a dynamic and instant indicator. Research limitations: We are trying to find the cutting-edge research fronts, but those generated based on co-citations may refer to the hot research fronts. The usage count of older highly cited papers was not taken into consideration, because the usage count indicator released by WoS only reflects usage logs after February 2013. Practical implications: The article provides a new perspective on using usage count as a new indicator to detect research fronts.Originality/value: Usage count can greatly shorten the time lag in research fronts detection, which would be a promising complementary indicator in detection of the latest research fronts.