北京师范大学参与共建的85 cm光学望远镜是中国科学院国家天文台兴隆观测站的主力观测设备之一.利用该望远镜在2019年5月12日的非常规观测数据,构建了其在B、V、 R、 I 4个波段的夜天光平场,并与相应的天光平场进行了比较.发现天光平场...北京师范大学参与共建的85 cm光学望远镜是中国科学院国家天文台兴隆观测站的主力观测设备之一.利用该望远镜在2019年5月12日的非常规观测数据,构建了其在B、V、 R、 I 4个波段的夜天光平场,并与相应的天光平场进行了比较.发现天光平场改正的典型误差在0.5%左右,全视场最大可达1.5%–2.0%.同时,还构建了I波段夜天光背景的Fringing模型,并开放给该望远镜用户使用.展开更多
In this paper, a threshold voltage model for high-k gate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived th...In this paper, a threshold voltage model for high-k gate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived through a conformal mapping transformation method to consider the fringing-field effects including the influences of high-k gate-dielectric and sidewall spacer. Comparing with similar models, the proposed model can be applied to general situations where the gate dielectric and sidewall spacer can have different dielectric constants. The influences of sidewall spacer and high-k gate dielectric on fringing field distribution of the gate dielectric and thus threshold voltage behaviours of a MOSFET are discussed in detail.展开更多
Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models i...Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models is confirmed by the good agreement between the simulated results and the experimental data. Based on the models, some factors impacting the threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor(MOSFET) are discussed in detail and it is found that there is an optimum thickness of gate oxide for definite dielectric constant of gate oxide to obtain the minimum subthreshold swing. As a result, it is shown that the fringing-capacitance effect of a shortchannel GeOI MOSFET cannot be ignored in calculating the threshold voltage and subthreshold swing.展开更多
In this paper, we obtain tidal constituents and discuss observations of tidal and wind variations and its impact on water surface elevation at Zaki’s Reef;a fringing coral reef located in the Red Sea-Gulf of Suez. Th...In this paper, we obtain tidal constituents and discuss observations of tidal and wind variations and its impact on water surface elevation at Zaki’s Reef;a fringing coral reef located in the Red Sea-Gulf of Suez. This manuscript focuses on investigating if tidal forces are playing a key role to keep the area’s unique coral reefs alive and well. Determining the reasons why coral species and community of organisms found here survive despite all stressors is critical, and such information may hold the key to the preservation of reefs elsewhere. Phase and amplitude for 35 tidal constituents were deducted from observations of water surface elevation at the study site (first of its kind). The main tidal constituents based on their amplitudes are: M2, N2, S2, K1, NU2, K2, 2Ns, L2, and MU2. The first five tidal constituents of the aforementioned list are enough to reproduce accurate predictions of tides at this location (R2 variance = 87.54% and RMS = 0.167). The Tidal Form number (0.07) at Zaki’s Reef indicates a fully semidiurnal dominated tidal regime. Moreover, the Sa and Ssa constituents obtained from nearby stations made no improvements on tidal prediction results. Spectral analysis results of the white noise (residuals) from observed water surface elevation are dominated by daily frequency, suggesting that local wind plays a key role in circulation at study site. Local wind generated southerly long-shore and year-round offshore wind stress with a mean of?-0.36 & 0.35 , respectively. The persistent longshore and offshore currents help transport oil patches/spills, from the two nearby ports, away from the reef. Yet, offshore wind stress, pushing water away from the shore, may cause more exposure of the reef to extreme atmospheric conditions. We hypothesize that the repeated reef exposure to the combined effect of tides and offshore wind stress over many years may have played a key role in selecting and then enhancing corals ability, through training, to become more adaptable to those harsh conditions. Training of corals over the years, may have led to the dominance of only six species, out of 35 coral species known to exist in the gulf. Those heat-adopted dominant species can be used to stimulate and revive impacted coral sites elsewhere.展开更多
Based on comprehensive survey of 6 transects on Luhuitou fringing reef in Sanya City of Hainan Island, China, some features of its biogeomorphologic processes were found, including ( i ) three basic biogeomorphologic ...Based on comprehensive survey of 6 transects on Luhuitou fringing reef in Sanya City of Hainan Island, China, some features of its biogeomorphologic processes were found, including ( i ) three basic biogeomorphologic units: inner reef flat, outer reef flat and reef slope; (ii) two important biogeomorphologic boundary lines: up limit for live flat coral growing between inner and outer reef flats is Mean Lower Low Water of tropic tide±15 cm; the break in slope between reef flat and reef slope is Theoretical Lowest Tide ±15 cm; (iii) three types of reef flat profiles in response to distinctive Holocene sea level changes and dynamic condition: Luhuitou type responds to falling sea level and low wave energy; Xiaodonghai type to falling sea sevel and high wave energy; type for atolls of Nansha Islands to stable sea level and low wave energy; (iv) hermatypic coral community is the most essential member in coral reef ecosystem and plays the most important role in biogeomorphologic process. Over the past 30展开更多
The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate(CSG) MOSFETs has been developed.Based on this a subthreshold drai...A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate(CSG) MOSFETs has been developed.Based on this a subthreshold drain current model has also been derived.This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model.The fringing gate capacitances taken into account are outer fringe capacitance,inner fringe capacitance,overlap capacitance,and sidewall capacitance.The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily.展开更多
Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate fro...Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate from the standard behavior. These beating patterns have primarily been attributed to charge-noise fluctuations.In this paper, we have experimentally observed Ramsey fringe with beating pattern for transmon qubits, and traced the origin to electric instruments induced flux noise.展开更多
Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may ...Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
1 The Edinburgh Festival Fringe,a three‑week festival of performing arts that takes place in Edinburgh every August,transforms Edinburgh into a dynamic center of creativity and entertainment.This festival draws a wide...1 The Edinburgh Festival Fringe,a three‑week festival of performing arts that takes place in Edinburgh every August,transforms Edinburgh into a dynamic center of creativity and entertainment.This festival draws a wide range of participants,from new artists aiming to make their mark to seasoned performers returning to take in the citys artistic atmosphere.With its open‑access policy,the Fringe truly offers a platform for everyone,providing unique opportunities for artists and audiences to engage in diverse cultural experiences.展开更多
In this work,the incorporation of tantalum(Ta)into p-type metal-oxide(SnO_(x))semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors(TFTs)....In this work,the incorporation of tantalum(Ta)into p-type metal-oxide(SnO_(x))semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors(TFTs).The Ta-doped SnO_(x)(SnO_(x):Ta)film is deposited by radio-frequency(RF)magnetron sputtering with a Sn:Ta(3 at.%)target and thermally annealed at 270℃ for 30 min.Here,we observe that the SnO_(x):Ta film presents increased crystallinity,reduced defect density(3.25×10^(12)cm^(−2)·eV^(−1)),and widened bandgap(1.98 eV),in comparison with the undoped SnO_(x)film.As a result,the SnO_(x):Ta TFTs exhibit a lower off-state current(Ioff),an improved on/off current ratio(2.17×10^(4)),a remarkably decreased subthreshold swing(SS)by 41%,and enhanced device stability.Additionally,by introducing Ta dopants,the fringe effect as well as the impact of channel width-to-length ratio(W/L)on electrical performances of the p-type oxide TFTs can be effectively suppressed.These results shall contribute to further exploration and development of p-type SnO_(x)TFTs.展开更多
Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied...Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.展开更多
Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of So...Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of South Africa and has a strong presence and contributes in areas of manufacturing sector,financial and business services,retail and wholesale trade,etc.The rapid urban population,increase in the informal settlements and socio-economic opportunities has resulted in considerable urban sprawl in and around the urban fringe areas of these metropolitan cities.The urban fringe areas of these metros often come under the influence of rapid urbanization process and pressures.Coupled with the economical and potential land dynamics and lack of priority of spatial development guidelines,these areas attract rapid and haphazard development from communities and developers.Research Design/Methodology:This research is based on a qualitative approach through a comprehensive literature review that included content analysis of key documents on housing sector such as IDPs(Integrated Development Plans),Municipal Annual Reports,Growth Development Strategies,and among other sectoral documents on housing sector.Some of the key priority issues considered in the housing sector included:eradication of housing backlogs,spatial restructuring of housing,provision of choice in terms of location,tenure and housing typology.Findings:The current paper discusses the approaches of metropolitan housing development processes in three metropolitan cities of South Africa from Gauteng region,namely:Johannesburg,Ekurhuleni and Tshwane.The paper discusses the existing housing sectoral scenario along with the fringe areas in three cities with focus on:formal and informal settlements,housing segregation and the backlogs,current institutional arrangements,role of public private participation,and scope for alternate mechanisms.The paper concludes in discussion on sustainable development options for housing development in urban fringe areas.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwa...Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.展开更多
Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP syste...Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP system,typically contains a large number of invalid points caused by the background,ambient light,shadows,and object edge regions.Research on noisy point detection and elimination has been conducted over the past two decades.However,existing invalid point removal methods are based on image intensity analysis and are only applicable to simple measurement backgrounds that are purely dark.In this paper,we propose a novel invalid point removal framework that consists of two aspects:(1)A convolutional neural network(CNN)is designed to segment the foreground from the background of different intensity conditions in FPP measurement circumstances to remove background points and the most discrete points in background regions.(2)A two-step method based on the fringe image intensity threshold and a bilateral filter is proposed to eliminate the small number of discrete points remaining after background segmentation caused by shadows and edge areas on objects.Experimental results verify that the proposed framework(1)can remove background points intelligently and accurately in different types of complex circumstances,and(2)performs excellently in discrete point detection from object regions.展开更多
Efficient third-order nonlinearities of the Zinc Oxide and Al-doped Zinc Oxide were studied by Third Harmonic Generation (Third Harmonic Generation) Maker fringes to establish the effect Aluminum of Aluminum doping (A...Efficient third-order nonlinearities of the Zinc Oxide and Al-doped Zinc Oxide were studied by Third Harmonic Generation (Third Harmonic Generation) Maker fringes to establish the effect Aluminum of Aluminum doping (Al-doping) on the cubic nonlinearities. Adding the Al-dopant to the Zinc Oxide crystal structure results in changes that affect the optical and nonlinear characteristics. Presented results indicate that the magnitude of X<sup>(3)</sup> was enhanced at single experimental wavelengths;however, across the broadband experimental spectrum, the effect of Al-doping remained relatively constant. The observed enhancement of third-order nonlinearity was purely from the bound electronic response. The observation is attributed to increased charge carriers and spontaneous polarization in the Zinc Oxide and Al-doped Zinc Oxide crystal structure.展开更多
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of...We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.展开更多
文摘北京师范大学参与共建的85 cm光学望远镜是中国科学院国家天文台兴隆观测站的主力观测设备之一.利用该望远镜在2019年5月12日的非常规观测数据,构建了其在B、V、 R、 I 4个波段的夜天光平场,并与相应的天光平场进行了比较.发现天光平场改正的典型误差在0.5%左右,全视场最大可达1.5%–2.0%.同时,还构建了I波段夜天光背景的Fringing模型,并开放给该望远镜用户使用.
基金Project supported by the National Natural Science Foundation of China (Grant No 60376019).
文摘In this paper, a threshold voltage model for high-k gate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived through a conformal mapping transformation method to consider the fringing-field effects including the influences of high-k gate-dielectric and sidewall spacer. Comparing with similar models, the proposed model can be applied to general situations where the gate dielectric and sidewall spacer can have different dielectric constants. The influences of sidewall spacer and high-k gate dielectric on fringing field distribution of the gate dielectric and thus threshold voltage behaviours of a MOSFET are discussed in detail.
基金supported by the National Natural Science Foundation of China(Grant No.61274112)
文摘Models of threshold voltage and subthreshold swing, including the fringing-capacitance effects between the gate electrode and the surface of the source/drain region, are proposed. The validity of the proposed models is confirmed by the good agreement between the simulated results and the experimental data. Based on the models, some factors impacting the threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor(MOSFET) are discussed in detail and it is found that there is an optimum thickness of gate oxide for definite dielectric constant of gate oxide to obtain the minimum subthreshold swing. As a result, it is shown that the fringing-capacitance effect of a shortchannel GeOI MOSFET cannot be ignored in calculating the threshold voltage and subthreshold swing.
文摘In this paper, we obtain tidal constituents and discuss observations of tidal and wind variations and its impact on water surface elevation at Zaki’s Reef;a fringing coral reef located in the Red Sea-Gulf of Suez. This manuscript focuses on investigating if tidal forces are playing a key role to keep the area’s unique coral reefs alive and well. Determining the reasons why coral species and community of organisms found here survive despite all stressors is critical, and such information may hold the key to the preservation of reefs elsewhere. Phase and amplitude for 35 tidal constituents were deducted from observations of water surface elevation at the study site (first of its kind). The main tidal constituents based on their amplitudes are: M2, N2, S2, K1, NU2, K2, 2Ns, L2, and MU2. The first five tidal constituents of the aforementioned list are enough to reproduce accurate predictions of tides at this location (R2 variance = 87.54% and RMS = 0.167). The Tidal Form number (0.07) at Zaki’s Reef indicates a fully semidiurnal dominated tidal regime. Moreover, the Sa and Ssa constituents obtained from nearby stations made no improvements on tidal prediction results. Spectral analysis results of the white noise (residuals) from observed water surface elevation are dominated by daily frequency, suggesting that local wind plays a key role in circulation at study site. Local wind generated southerly long-shore and year-round offshore wind stress with a mean of?-0.36 & 0.35 , respectively. The persistent longshore and offshore currents help transport oil patches/spills, from the two nearby ports, away from the reef. Yet, offshore wind stress, pushing water away from the shore, may cause more exposure of the reef to extreme atmospheric conditions. We hypothesize that the repeated reef exposure to the combined effect of tides and offshore wind stress over many years may have played a key role in selecting and then enhancing corals ability, through training, to become more adaptable to those harsh conditions. Training of corals over the years, may have led to the dominance of only six species, out of 35 coral species known to exist in the gulf. Those heat-adopted dominant species can be used to stimulate and revive impacted coral sites elsewhere.
基金This work was supported by the National Natural Science Foundation of China (Grant No.49776303) the Chinese Academy of Sciences.
文摘Based on comprehensive survey of 6 transects on Luhuitou fringing reef in Sanya City of Hainan Island, China, some features of its biogeomorphologic processes were found, including ( i ) three basic biogeomorphologic units: inner reef flat, outer reef flat and reef slope; (ii) two important biogeomorphologic boundary lines: up limit for live flat coral growing between inner and outer reef flats is Mean Lower Low Water of tropic tide±15 cm; the break in slope between reef flat and reef slope is Theoretical Lowest Tide ±15 cm; (iii) three types of reef flat profiles in response to distinctive Holocene sea level changes and dynamic condition: Luhuitou type responds to falling sea level and low wave energy; Xiaodonghai type to falling sea sevel and high wave energy; type for atolls of Nansha Islands to stable sea level and low wave energy; (iv) hermatypic coral community is the most essential member in coral reef ecosystem and plays the most important role in biogeomorphologic process. Over the past 30
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
基金Project supported by the AICTE(No.8023/BOR/RID/RPS-253/2008-09)the SMDP-Ⅱ Project(No.21(1)/2005-VCND) by MCIT, DeiTy,Govt of India
文摘A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate(CSG) MOSFETs has been developed.Based on this a subthreshold drain current model has also been derived.This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model.The fringing gate capacitances taken into account are outer fringe capacitance,inner fringe capacitance,overlap capacitance,and sidewall capacitance.The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily.
文摘Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate from the standard behavior. These beating patterns have primarily been attributed to charge-noise fluctuations.In this paper, we have experimentally observed Ramsey fringe with beating pattern for transmon qubits, and traced the origin to electric instruments induced flux noise.
基金supported by the Science and Technology Program Project of Tianjin(No.24ZXZSSS00300).
文摘Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
文摘1 The Edinburgh Festival Fringe,a three‑week festival of performing arts that takes place in Edinburgh every August,transforms Edinburgh into a dynamic center of creativity and entertainment.This festival draws a wide range of participants,from new artists aiming to make their mark to seasoned performers returning to take in the citys artistic atmosphere.With its open‑access policy,the Fringe truly offers a platform for everyone,providing unique opportunities for artists and audiences to engage in diverse cultural experiences.
基金supported in part by National Key R&D Program of China(Grant No.2022YFE0141500)National Natural Science Foundation of China(Grant Nos.62004065 and 62274059).
文摘In this work,the incorporation of tantalum(Ta)into p-type metal-oxide(SnO_(x))semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors(TFTs).The Ta-doped SnO_(x)(SnO_(x):Ta)film is deposited by radio-frequency(RF)magnetron sputtering with a Sn:Ta(3 at.%)target and thermally annealed at 270℃ for 30 min.Here,we observe that the SnO_(x):Ta film presents increased crystallinity,reduced defect density(3.25×10^(12)cm^(−2)·eV^(−1)),and widened bandgap(1.98 eV),in comparison with the undoped SnO_(x)film.As a result,the SnO_(x):Ta TFTs exhibit a lower off-state current(Ioff),an improved on/off current ratio(2.17×10^(4)),a remarkably decreased subthreshold swing(SS)by 41%,and enhanced device stability.Additionally,by introducing Ta dopants,the fringe effect as well as the impact of channel width-to-length ratio(W/L)on electrical performances of the p-type oxide TFTs can be effectively suppressed.These results shall contribute to further exploration and development of p-type SnO_(x)TFTs.
基金Project supported by LingChuang Research Project of China National Nuclear Corporationthe National Natural Science Foundation of China(Grant No.12027812)。
文摘Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.
文摘Purpose:The metropolitan cities of Johannesburg,Ekurhuleni and Tshwane play an important role in the economy of the Gauteng province in South Africa.The region constitutes to 22.4 percent of the total population of South Africa and has a strong presence and contributes in areas of manufacturing sector,financial and business services,retail and wholesale trade,etc.The rapid urban population,increase in the informal settlements and socio-economic opportunities has resulted in considerable urban sprawl in and around the urban fringe areas of these metropolitan cities.The urban fringe areas of these metros often come under the influence of rapid urbanization process and pressures.Coupled with the economical and potential land dynamics and lack of priority of spatial development guidelines,these areas attract rapid and haphazard development from communities and developers.Research Design/Methodology:This research is based on a qualitative approach through a comprehensive literature review that included content analysis of key documents on housing sector such as IDPs(Integrated Development Plans),Municipal Annual Reports,Growth Development Strategies,and among other sectoral documents on housing sector.Some of the key priority issues considered in the housing sector included:eradication of housing backlogs,spatial restructuring of housing,provision of choice in terms of location,tenure and housing typology.Findings:The current paper discusses the approaches of metropolitan housing development processes in three metropolitan cities of South Africa from Gauteng region,namely:Johannesburg,Ekurhuleni and Tshwane.The paper discusses the existing housing sectoral scenario along with the fringe areas in three cities with focus on:formal and informal settlements,housing segregation and the backlogs,current institutional arrangements,role of public private participation,and scope for alternate mechanisms.The paper concludes in discussion on sustainable development options for housing development in urban fringe areas.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
文摘Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.
基金Supported by National Defense Basic Scientific Research Program of China(Grant No.JCKY2021602B032)。
文摘Fringe projection profilometry(FPP)has been widely applied to non-contact three-dimensional measurement in industries owing to its high accuracy and speed.The point cloud,which is a measurement result of the FPP system,typically contains a large number of invalid points caused by the background,ambient light,shadows,and object edge regions.Research on noisy point detection and elimination has been conducted over the past two decades.However,existing invalid point removal methods are based on image intensity analysis and are only applicable to simple measurement backgrounds that are purely dark.In this paper,we propose a novel invalid point removal framework that consists of two aspects:(1)A convolutional neural network(CNN)is designed to segment the foreground from the background of different intensity conditions in FPP measurement circumstances to remove background points and the most discrete points in background regions.(2)A two-step method based on the fringe image intensity threshold and a bilateral filter is proposed to eliminate the small number of discrete points remaining after background segmentation caused by shadows and edge areas on objects.Experimental results verify that the proposed framework(1)can remove background points intelligently and accurately in different types of complex circumstances,and(2)performs excellently in discrete point detection from object regions.
文摘Efficient third-order nonlinearities of the Zinc Oxide and Al-doped Zinc Oxide were studied by Third Harmonic Generation (Third Harmonic Generation) Maker fringes to establish the effect Aluminum of Aluminum doping (Al-doping) on the cubic nonlinearities. Adding the Al-dopant to the Zinc Oxide crystal structure results in changes that affect the optical and nonlinear characteristics. Presented results indicate that the magnitude of X<sup>(3)</sup> was enhanced at single experimental wavelengths;however, across the broadband experimental spectrum, the effect of Al-doping remained relatively constant. The observed enhancement of third-order nonlinearity was purely from the bound electronic response. The observation is attributed to increased charge carriers and spontaneous polarization in the Zinc Oxide and Al-doped Zinc Oxide crystal structure.
文摘We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.