The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing proc...The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing process. To carry out this investigation, Ag was added by 5.3, 10.6, and 16.0 wt.% to an AA2024 consumable rod by inserting holes in it. It was found that due to the strengthening by solid solution and the formation of precipitates and intermetallic containing Ag, the driving force for grain growth is reduced and consequently the grain size of the coating is decreased. After artificial aging heat treatment, the electrical conductivities of the coatings containing 0 and 16.0 wt.% Ag are increased by 4.15%(IACS) and decreased by 2.15%(IACS), respectively. While considering a linear relationship, it can be proposed that for a 1 wt.% Ag increase, the strength and hardness of the coating will be increased by 1.8% and 1.0%, respectively. It was established that the effect of Al6(Cu,Ag)Mg4 precipitate formation on strengthening is greater than that of Ag-rich intermetallic.展开更多
A new variant of friction-assisted process named friction surface alloying(FSA)for developing surface alloys was demonstrated in the present work.In FSA,the dispersed phase is melted and allowed to react with the matr...A new variant of friction-assisted process named friction surface alloying(FSA)for developing surface alloys was demonstrated in the present work.In FSA,the dispersed phase is melted and allowed to react with the matrix material to form an alloy at the surface of a metallic substrate.In the present work,magnesium(Mg)sheets and zinc(Zn)powder were selected,and fine grained(~3.5μm)Mg–Zn surface alloy with improved hardness was produced by FSA.X-ray diffraction studies confirmed the formation of intermetallic phases of Mg and Zn at the surface.From the in vitro degradation studies carried out by immersing in simulated body fluids,a lower corrosion rate was observed for the Mg–Zn surface alloy compared with pure Mg.The surface morphologies after immersion studies indicated large degraded areas on the base Mg compared with Mg–Zn.The results demonstrate the potential of FSA in developing Mg-based surface alloys without melting the substrate to impart better surface properties.展开更多
Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient wa...Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique On the surface of the sheets, ultra-fine grains were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during recrystallization were also studied by electron back-scattered diffraction (EBSD) technique after being annealed at selected temperatures and time. The results indicated that the preferred orientations resulting from FRSP and annealing in the surface layer were formed during rolling and its recrystallization textures were reduced by FRSP. In addition, the texture evolved stably without change in main components during the annealing.展开更多
The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have bee...The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have been analysed; the effect of the friction is often neglected. Since the frictional effect is always associated with flow, especially when it flows over the mountain. The study shows that the friction is small in the magnitude but it is not a negligible effect because it changes the features of the flow. In the case of super-or sub-critical flow, there are two extremes: one maximum, one minimum of the fluid surface on the lee-side of the mountain, while in the inviscid fluid, there is just one extreme. The frictional effect should neither be too strong nor too weak to make the situation happened according to the investigation of this paper.展开更多
When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. Prom the viewpoint of water vapor supply, frictional convergence and Ekman pumping...When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. Prom the viewpoint of water vapor supply, frictional convergence and Ekman pumping provide a source of moisture for organized cumulus convection and is propitious to the spin-up of TCs. On the other hand, surface friction leads to a dissipation of kinetic energy that impedes the intensification of TCs. Which role is dominant in the developing stage of TCs is a controversial issue. In the present work, the influence of surface friction on the growth of TCs is re-examined in detail by conducting two sets of numerical experiments initialized with different cyclonic disturbances. Results indicate that, because of the inherent complexities of TCs, the impact of surface friction on the evolution of TCs can not be simply boiled down to being positive or negative. In the case that a TC starts from a low-level vortex with a warm core, surface friction and the resultant vertical motion makes an important contribution to the convection in the early developing stage of the TC by accelerating the build-up of convective available potential energy (CAPE) and ensuring moisture supply and the lifting of air parcels. This effect is so prominent that it dominates the friction-induced dissipation and makes surface friction a facilitative factor in the spin-up of the TC. However, for a TC formed from a mesoscale convective vortex (MCV) spawned in a long-lasting mesoscale convective system (MCS), the initial fields, and especially the low-level humidity and cold core, enable the prerequisites of convection (i.e., conditional instability, moisture, and lifting), to be easily achieved even without the help of boundary-layer pumping induced by surface friction. Accordingly, the reliance of the development of TCs on surface friction is not as heavy as that derived from a lowlevel vortex. The positive effect of surface friction on the development of TCs realized through facilitating favorable conditions for convection is nearly cancelled out by the friction-induced dissipation. However, as SST is enhanced in the latter case, the situation may be changed, and different development speeds may emerge between model TCs with and without surface friction considered. In short, owing to the fact that TC development is a complicated process affected by many factors such as initial perturbations, SST, etc., the importance of surface friction to the intensification of TCs may vary enormously from case to case.展开更多
The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors ofthe hydrogels do not conform to Amonton's law F=μW which well describes the friction of solids....The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors ofthe hydrogels do not conform to Amonton's law F=μW which well describes the friction of solids. The frictional force andits dependence on the load are quite different depending on the chemical structures of the gels, surface properties of theopposing substrates, and the measurement condition. The gel friction is explained in terms of interracial interaction, eitherattractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed tothe viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chainfrom the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed agood correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.展开更多
The tribological properties of newly developed friction material were evaluated by statistical analysis of the major affecting factors.The material for investigation was non-metallic friction material synergistically ...The tribological properties of newly developed friction material were evaluated by statistical analysis of the major affecting factors.The material for investigation was non-metallic friction material synergistically reinforced with aramid fibre and CaSO 4 whisker,which was developed for hoisting applications in coal mine.The response surface method(RSM)was employed to analyze the material performances affected by the independent and interactive effect of the factors under the normal working condition and severe working condition,respectively.Results showed that under the normal working condition,the newly developed material exhibited stable tribological properties which were insensitive to the test conditions.While under the severe working condition,the sliding velocity was the most dominant factor affecting the friction coefficient.Additionally,compared to the commercially available material,the modified material showed superior wear resistance and thermal stability.展开更多
A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelaye...A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelayer with an average hardness of~HV 1170 is formed.The hardness was increased by WC and TiN reinforcingparticles,dissolved Co atoms in Ti,and the formation of ultrafine grains.WC particles were incorporated into the Tisubstrate owing to the intense frictional interaction/heating at the tool-plate interface(~1000℃),which led to strengthloss and wear of the tool.The Williamson-Hall analysis of the XRD peaks of the SFSed sample confirmed a significantlysmall crystallite size(~100 nm).Wear tests showed that the wear resistance of the composite structure was about 4.5times higher than that of the CP-Ti.Friction analysis revealed a significant reduction in average value and fluctuations ofthe friction coefficient.展开更多
This study investigated the effect of pre-friction surfacing heat treatment of consumable rods and heat input during friction surfacing on the microstructure,mechanical properties,and wear resistance of hypereutectic ...This study investigated the effect of pre-friction surfacing heat treatment of consumable rods and heat input during friction surfacing on the microstructure,mechanical properties,and wear resistance of hypereutectic Al-Si alloy deposited on a commercially pure aluminum substrate.The results show that regardless of the consumable rod’s heat treatment conditions,the coating’s efficiency has increased with the increase in heat input,so the coating efficiency increases by 20%and 30%in the solid solution-treated rod and the artificially aged rod,respectively.By increasing the heat input,the average grain size in the coating fabricated by solid solution-treated rod and artificially aged rod increased from 0.1 to 0.9μm and from 0.2 to 1.3μm,respectively.At constant heat input,the average hardness and wear resistance of the coating created in the solid solution-treated rod are lower than those of the artificially aged rod.By decreasing heat input,the wear loss in the coating fabricated by solid solution-treated rod and artificially aged rod decreased by 10%and 20%,respectively,reaching 0.1 and 0.03μg/m.展开更多
This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method an...This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.展开更多
Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joi...Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.展开更多
The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabrica...The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabricated by in-situ methods based on adding nickel powders to Al-Zn-Mg-Cu alloy melt during the semi-solid casting process.The findings showed that an increase in the rotational speed from 600 to 1000 r/min raised the coating efficiency from 65% to 76%. Besides, there was no significant difference between coating efficiencies in the coating with and without nickel-aluminide. The outcomes showed that if the coating was applied at a rotational speed of 1000 r/min, a traverse speed of 100 mm/min, and an axial feeding rate of 125 mm/min, the hardness and shear strength of the substrate increased by up to 225% and 195%, respectively. But the wear rate of the substrate dropped by 75%. Although the hardness of the coating containing nickel-aluminide increases by up to 32% compared to the coating without nickel-aluminide, nickel-aluminide does not affect the thermal stability of the coating.展开更多
In this work,the serpentine powders were sintered to make the serpentine-reinforced Al-matrix composites,and the microstructures of which were characterized by differential scanning calorimetry,thermal gravimetric ana...In this work,the serpentine powders were sintered to make the serpentine-reinforced Al-matrix composites,and the microstructures of which were characterized by differential scanning calorimetry,thermal gravimetric analyzer,and X-ray diffractometer.Scanning electron microscopy equipped with energy dispersive spectroscopy.Results show that the sintered serpentine powders were deeply absorbed on the worn surface and embedded in the furrows and scratches of the matrix,forming a self-repairing surface layer which reduces the friction coefficient.The surface layer coated by serpentine was compact,dense,and uniform with the friction time prolonged,compensating the worn loss and increasing the matrix mass.展开更多
Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of...Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.展开更多
At present,the existing piezoelectric stick-slip actuators have an inherent back-slip problem,which greatly limits the development and application of stick-slip actuators.In order to inhibit the regression phenomenon,...At present,the existing piezoelectric stick-slip actuators have an inherent back-slip problem,which greatly limits the development and application of stick-slip actuators.In order to inhibit the regression phenomenon,a new bionic lemongrass stickslip actuator was prepared by using polymer PDMS to replicate natural biological surface.The surface microstructure of the grass was copied by PDMS,and the PDMS film was prepared.The rigid and flexible bionic friction pair was further prepared,and the flexible anisotropic PDMS stick slip actuator was developed.It was found that the anisotropic friction characteristics of the surface microstructure of the grass inhibited the anti-sliding motion,and the elastic potential energy of the PDMS film improved the output characteristics of the driver.By adjusting the input voltage to control the contact between the drive foot and the rotor,the rigid and flexible hybrid drive can be realized and the backsliding phenomenon can be suppressed.The actuator is compact,lightweight and can achieve high speed and high resolution output without preloading force,which has important application value in the field of fast and accurate positioning with load limitation.展开更多
Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage...Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.展开更多
Topography-induced potential vorticity (PV) banners over a mesoscale topography (Dabie Mountain, hereafter DM) in eastern China, under an idealized dry adiabatic flow, are studied with a mesoscale numerical model,...Topography-induced potential vorticity (PV) banners over a mesoscale topography (Dabie Mountain, hereafter DM) in eastern China, under an idealized dry adiabatic flow, are studied with a mesoscale numerical model, ARPS. PV banners generate over the leeside of the DM with a maximal intensity of ~1.5 PVU, and extend more than 100 km downstream, while the width varies from several to tens of kilometers, which contrasts with the half-width of the peaks along the ridge of the DM. Wave breaking occurs near the leeside surface of the DM, and leads to a strong PV generation. Combining with the PV generation, due to the friction and the flow splitting upstream, the PV is advected downstream, and then forms the PV banners over the DM. The PV banners are sensitive to the model resolution, Coriolis force, friction, subgrid turbulent mixing, stratification, the upstream wind speed and wind direction. The negative PV banners have a more compact connection with the low level turbulent kinetic energy. The PV banners are built up by the baroclinic and barotropic components. The barotropic-associated PV can identify the distribution of the PV banners, while the baroclinic one only has important contributions on the flanks and on the leeside near the topography. PV fluxes are diagnosed to investigate the influence of friction on the PV banners. Similar patterns are found between the total PV flux and the advective PV flux, except near the surface and inside the dipole of the PV banners, where the nonadvective PV flux associated with the friction has a net negative contribution.展开更多
Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipit...Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipitation remains poorly understood. In this study, high-resolution ensemble simulations of Typhoon Rumbia(2018), which crossed the Yangtze River Delta urban agglomeration, were conducted to analyze the potential urban impact on TC precipitation. Results show that the inner-core rainfall of Rumbia is strengthened by approximately 10% due to the urban impact near the landfall,whereas minor differences in outer-core rainfall are found when the urban impact is excluded. Further diagnostic analyses indicate that low-level upward motion is crucial for precipitation evolution, as both co-vary during landfall. Moreover, the frictionally induced upward motion plays a decisive role in enhancing the rainfall when the urban impacts are included.Urban surface friction can decelerate the tangential wind and therefore destroy the gradient balance and strengthen the radial wind within the boundary layer and thus can enhance upward motion. This study demonstrates that urban surface friction and related physical processes make the most significant contribution to landfalling TC rainfall enhancement.展开更多
Some numerical simulations from real data were carried out to examine the impacts of surface friction and orographic forcing on the East Asia coastal cyclogenesis.The results show that the decreasing of the surface fr...Some numerical simulations from real data were carried out to examine the impacts of surface friction and orographic forcing on the East Asia coastal cyclogenesis.The results show that the decreasing of the surface friction over the ocean is essential for the cyclone development and the mechanical forcing of Qinghai-Xizang Plateau acts a damping effect in the initial stage of the cyclone.展开更多
基金funding support of Babol Noshirvani University of Technology,Iran,through Grant Program No.BNUT/370167/99。
文摘The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing process. To carry out this investigation, Ag was added by 5.3, 10.6, and 16.0 wt.% to an AA2024 consumable rod by inserting holes in it. It was found that due to the strengthening by solid solution and the formation of precipitates and intermetallic containing Ag, the driving force for grain growth is reduced and consequently the grain size of the coating is decreased. After artificial aging heat treatment, the electrical conductivities of the coatings containing 0 and 16.0 wt.% Ag are increased by 4.15%(IACS) and decreased by 2.15%(IACS), respectively. While considering a linear relationship, it can be proposed that for a 1 wt.% Ag increase, the strength and hardness of the coating will be increased by 1.8% and 1.0%, respectively. It was established that the effect of Al6(Cu,Ag)Mg4 precipitate formation on strengthening is greater than that of Ag-rich intermetallic.
文摘A new variant of friction-assisted process named friction surface alloying(FSA)for developing surface alloys was demonstrated in the present work.In FSA,the dispersed phase is melted and allowed to react with the matrix material to form an alloy at the surface of a metallic substrate.In the present work,magnesium(Mg)sheets and zinc(Zn)powder were selected,and fine grained(~3.5μm)Mg–Zn surface alloy with improved hardness was produced by FSA.X-ray diffraction studies confirmed the formation of intermetallic phases of Mg and Zn at the surface.From the in vitro degradation studies carried out by immersing in simulated body fluids,a lower corrosion rate was observed for the Mg–Zn surface alloy compared with pure Mg.The surface morphologies after immersion studies indicated large degraded areas on the base Mg compared with Mg–Zn.The results demonstrate the potential of FSA in developing Mg-based surface alloys without melting the substrate to impart better surface properties.
基金support in part by Grant-in-aid for Scientific Research from the Japan Society for Promotion of Science under Contract No. 16560605
文摘Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique On the surface of the sheets, ultra-fine grains were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during recrystallization were also studied by electron back-scattered diffraction (EBSD) technique after being annealed at selected temperatures and time. The results indicated that the preferred orientations resulting from FRSP and annealing in the surface layer were formed during rolling and its recrystallization textures were reduced by FRSP. In addition, the texture evolved stably without change in main components during the annealing.
基金This work was supported by the National Science Foundation of U.S.A.National Natural Science Foundation of China.
文摘The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have been analysed; the effect of the friction is often neglected. Since the frictional effect is always associated with flow, especially when it flows over the mountain. The study shows that the friction is small in the magnitude but it is not a negligible effect because it changes the features of the flow. In the case of super-or sub-critical flow, there are two extremes: one maximum, one minimum of the fluid surface on the lee-side of the mountain, while in the inviscid fluid, there is just one extreme. The frictional effect should neither be too strong nor too weak to make the situation happened according to the investigation of this paper.
基金supported by the National Natural Science Foundation of China under Grant No.40675024the Special Foundation for Public Service(Meteorology,GYHY200706033)partially supported by the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences
文摘When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. Prom the viewpoint of water vapor supply, frictional convergence and Ekman pumping provide a source of moisture for organized cumulus convection and is propitious to the spin-up of TCs. On the other hand, surface friction leads to a dissipation of kinetic energy that impedes the intensification of TCs. Which role is dominant in the developing stage of TCs is a controversial issue. In the present work, the influence of surface friction on the growth of TCs is re-examined in detail by conducting two sets of numerical experiments initialized with different cyclonic disturbances. Results indicate that, because of the inherent complexities of TCs, the impact of surface friction on the evolution of TCs can not be simply boiled down to being positive or negative. In the case that a TC starts from a low-level vortex with a warm core, surface friction and the resultant vertical motion makes an important contribution to the convection in the early developing stage of the TC by accelerating the build-up of convective available potential energy (CAPE) and ensuring moisture supply and the lifting of air parcels. This effect is so prominent that it dominates the friction-induced dissipation and makes surface friction a facilitative factor in the spin-up of the TC. However, for a TC formed from a mesoscale convective vortex (MCV) spawned in a long-lasting mesoscale convective system (MCS), the initial fields, and especially the low-level humidity and cold core, enable the prerequisites of convection (i.e., conditional instability, moisture, and lifting), to be easily achieved even without the help of boundary-layer pumping induced by surface friction. Accordingly, the reliance of the development of TCs on surface friction is not as heavy as that derived from a lowlevel vortex. The positive effect of surface friction on the development of TCs realized through facilitating favorable conditions for convection is nearly cancelled out by the friction-induced dissipation. However, as SST is enhanced in the latter case, the situation may be changed, and different development speeds may emerge between model TCs with and without surface friction considered. In short, owing to the fact that TC development is a complicated process affected by many factors such as initial perturbations, SST, etc., the importance of surface friction to the intensification of TCs may vary enormously from case to case.
文摘The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors ofthe hydrogels do not conform to Amonton's law F=μW which well describes the friction of solids. The frictional force andits dependence on the load are quite different depending on the chemical structures of the gels, surface properties of theopposing substrates, and the measurement condition. The gel friction is explained in terms of interracial interaction, eitherattractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed tothe viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chainfrom the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed agood correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.
基金Funded by National Natural Science Foundation of China(No. 50875253)Natural Science Foundation of Jiangsu Province of China(No. BK2008127)Key Project of Chinese Ministry of Education(NO.107054)
文摘The tribological properties of newly developed friction material were evaluated by statistical analysis of the major affecting factors.The material for investigation was non-metallic friction material synergistically reinforced with aramid fibre and CaSO 4 whisker,which was developed for hoisting applications in coal mine.The response surface method(RSM)was employed to analyze the material performances affected by the independent and interactive effect of the factors under the normal working condition and severe working condition,respectively.Results showed that under the normal working condition,the newly developed material exhibited stable tribological properties which were insensitive to the test conditions.While under the severe working condition,the sliding velocity was the most dominant factor affecting the friction coefficient.Additionally,compared to the commercially available material,the modified material showed superior wear resistance and thermal stability.
文摘A surface Ti-WC composite was fabricated on CP-Ti by surface friction stirring(SFS)using a pinless WC-Cotool at a processing window of 800−2500 r/min and 8−50 mm/min.At 1600 r/min-50 mm/min,a defect-free compositelayer with an average hardness of~HV 1170 is formed.The hardness was increased by WC and TiN reinforcingparticles,dissolved Co atoms in Ti,and the formation of ultrafine grains.WC particles were incorporated into the Tisubstrate owing to the intense frictional interaction/heating at the tool-plate interface(~1000℃),which led to strengthloss and wear of the tool.The Williamson-Hall analysis of the XRD peaks of the SFSed sample confirmed a significantlysmall crystallite size(~100 nm).Wear tests showed that the wear resistance of the composite structure was about 4.5times higher than that of the CP-Ti.Friction analysis revealed a significant reduction in average value and fluctuations ofthe friction coefficient.
文摘This study investigated the effect of pre-friction surfacing heat treatment of consumable rods and heat input during friction surfacing on the microstructure,mechanical properties,and wear resistance of hypereutectic Al-Si alloy deposited on a commercially pure aluminum substrate.The results show that regardless of the consumable rod’s heat treatment conditions,the coating’s efficiency has increased with the increase in heat input,so the coating efficiency increases by 20%and 30%in the solid solution-treated rod and the artificially aged rod,respectively.By increasing the heat input,the average grain size in the coating fabricated by solid solution-treated rod and artificially aged rod increased from 0.1 to 0.9μm and from 0.2 to 1.3μm,respectively.At constant heat input,the average hardness and wear resistance of the coating created in the solid solution-treated rod are lower than those of the artificially aged rod.By decreasing heat input,the wear loss in the coating fabricated by solid solution-treated rod and artificially aged rod decreased by 10%and 20%,respectively,reaching 0.1 and 0.03μg/m.
基金Department of Science and Technology [DST-WOS-A, No.SR/WOS-A/ET-1093/2015 (G)] for funding the project
文摘This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding.
基金financial support on this work from the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)Shandong University for the Postdoctoral fellowship
文摘Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.
文摘The effect of rotational speed in the friction surfacing of nickel-aluminide reinforced Al-Zn-Mg-Cu alloy matrix composite on commercially pure aluminum was investigated. The nickel-aluminide reinforcement was fabricated by in-situ methods based on adding nickel powders to Al-Zn-Mg-Cu alloy melt during the semi-solid casting process.The findings showed that an increase in the rotational speed from 600 to 1000 r/min raised the coating efficiency from 65% to 76%. Besides, there was no significant difference between coating efficiencies in the coating with and without nickel-aluminide. The outcomes showed that if the coating was applied at a rotational speed of 1000 r/min, a traverse speed of 100 mm/min, and an axial feeding rate of 125 mm/min, the hardness and shear strength of the substrate increased by up to 225% and 195%, respectively. But the wear rate of the substrate dropped by 75%. Although the hardness of the coating containing nickel-aluminide increases by up to 32% compared to the coating without nickel-aluminide, nickel-aluminide does not affect the thermal stability of the coating.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50975166 and 51475280)the Excellent Engineer Training Program (Metallic material engineering of Shanghai University) of Ministry of Education, China
文摘In this work,the serpentine powders were sintered to make the serpentine-reinforced Al-matrix composites,and the microstructures of which were characterized by differential scanning calorimetry,thermal gravimetric analyzer,and X-ray diffractometer.Scanning electron microscopy equipped with energy dispersive spectroscopy.Results show that the sintered serpentine powders were deeply absorbed on the worn surface and embedded in the furrows and scratches of the matrix,forming a self-repairing surface layer which reduces the friction coefficient.The surface layer coated by serpentine was compact,dense,and uniform with the friction time prolonged,compensating the worn loss and increasing the matrix mass.
基金Funded by the National Young Top Talents Plan of China(2013042)the National Science Foundation of China(21676052,21606042)+1 种基金the Science Foundation for Distinguished Young Scholars of Heilongjiang Province(JC201403)the Natural Science Foundation of Heilongjiang Province(E2015034)
文摘Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.
基金supported by the National Science Fund for Distinguished Young Scholars(51925504)National major research instrument development projects(52227810)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(52021003)the National Natural Science Foundation of China(52175271,52021003,52375287).
文摘At present,the existing piezoelectric stick-slip actuators have an inherent back-slip problem,which greatly limits the development and application of stick-slip actuators.In order to inhibit the regression phenomenon,a new bionic lemongrass stickslip actuator was prepared by using polymer PDMS to replicate natural biological surface.The surface microstructure of the grass was copied by PDMS,and the PDMS film was prepared.The rigid and flexible bionic friction pair was further prepared,and the flexible anisotropic PDMS stick slip actuator was developed.It was found that the anisotropic friction characteristics of the surface microstructure of the grass inhibited the anti-sliding motion,and the elastic potential energy of the PDMS film improved the output characteristics of the driver.By adjusting the input voltage to control the contact between the drive foot and the rotor,the rigid and flexible hybrid drive can be realized and the backsliding phenomenon can be suppressed.The actuator is compact,lightweight and can achieve high speed and high resolution output without preloading force,which has important application value in the field of fast and accurate positioning with load limitation.
基金Projects(51308073,51378081)supported by the National Natural Science Foundation of ChinaProject(20124316120002)supported by PhD Programs Foundation of Ministry of Education of China+1 种基金Project(12KB02)supported by the Key Laboratory for Safety Control of Bridge Engineering of Ministry of Education of ChinaProject(14JJ3087)supported by the Science Foundation of Hunan Province,China
文摘Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.
基金supported bythe National Key Scientific and Technological Project2006BAC02B03, 2004CB418300, GYHY2000706033 under the FANEDD 200325the Specialized Research Fund for the Doctoral Program of Higher Education (No.20080284019)National Natural Science Foundation of China under Grant Nos. 40705019, 40325014 and 40333031
文摘Topography-induced potential vorticity (PV) banners over a mesoscale topography (Dabie Mountain, hereafter DM) in eastern China, under an idealized dry adiabatic flow, are studied with a mesoscale numerical model, ARPS. PV banners generate over the leeside of the DM with a maximal intensity of ~1.5 PVU, and extend more than 100 km downstream, while the width varies from several to tens of kilometers, which contrasts with the half-width of the peaks along the ridge of the DM. Wave breaking occurs near the leeside surface of the DM, and leads to a strong PV generation. Combining with the PV generation, due to the friction and the flow splitting upstream, the PV is advected downstream, and then forms the PV banners over the DM. The PV banners are sensitive to the model resolution, Coriolis force, friction, subgrid turbulent mixing, stratification, the upstream wind speed and wind direction. The negative PV banners have a more compact connection with the low level turbulent kinetic energy. The PV banners are built up by the baroclinic and barotropic components. The barotropic-associated PV can identify the distribution of the PV banners, while the baroclinic one only has important contributions on the flanks and on the leeside near the topography. PV fluxes are diagnosed to investigate the influence of friction on the PV banners. Similar patterns are found between the total PV flux and the advective PV flux, except near the surface and inside the dipole of the PV banners, where the nonadvective PV flux associated with the friction has a net negative contribution.
基金supported by the National Science Foundation of China (Grant Nos. 42088101 and 42175005)by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_1137)。
文摘Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipitation remains poorly understood. In this study, high-resolution ensemble simulations of Typhoon Rumbia(2018), which crossed the Yangtze River Delta urban agglomeration, were conducted to analyze the potential urban impact on TC precipitation. Results show that the inner-core rainfall of Rumbia is strengthened by approximately 10% due to the urban impact near the landfall,whereas minor differences in outer-core rainfall are found when the urban impact is excluded. Further diagnostic analyses indicate that low-level upward motion is crucial for precipitation evolution, as both co-vary during landfall. Moreover, the frictionally induced upward motion plays a decisive role in enhancing the rainfall when the urban impacts are included.Urban surface friction can decelerate the tangential wind and therefore destroy the gradient balance and strengthen the radial wind within the boundary layer and thus can enhance upward motion. This study demonstrates that urban surface friction and related physical processes make the most significant contribution to landfalling TC rainfall enhancement.
文摘Some numerical simulations from real data were carried out to examine the impacts of surface friction and orographic forcing on the East Asia coastal cyclogenesis.The results show that the decreasing of the surface friction over the ocean is essential for the cyclone development and the mechanical forcing of Qinghai-Xizang Plateau acts a damping effect in the initial stage of the cyclone.