Ti-6Al-4V is widely used in the aviation industry because of its high strength, and good heat resistance. However, severe tool wear on the rake face occurs during the milling of Ti-6Al-4V,which is caused by intense fr...Ti-6Al-4V is widely used in the aviation industry because of its high strength, and good heat resistance. However, severe tool wear on the rake face occurs during the milling of Ti-6Al-4V,which is caused by intense friction between the tool rake face and the chips. To investigate tool wear in the milling of Ti-6Al-4V, ultrasonic vibration is introduced, and a cutting force prediction model that considers tool-chip contact interface friction behavior in Ultrasonic Longitudinal-Torsional Vibration-Assisted Milling(ULTVAM) is proposed in this paper. First, the tool tip motion trajectory and dynamic cutting thickness under ULTVAM were analyzed calculated, and compared with those in Common Milling(CM). Subsequently, the effects of ultrasonic vibration on the shear force under the ultrasonic softening effect, the friction force, and the friction reversal force on the toolchip contact interface were investigated. A dynamic milling force model under ULTVAM was established before and after friction force reversal caused by ultrasonic longitudinal-torsional vibration. Finally, numerous experiments were conducted to validate the proposed model, and the experimental results indicated that the calculated dynamic milling forces agreed well with the measured values, with errors in the X and Y directions of 5.51% and 10.23%, respectively. In addition, the average roughness of the workpiece surface also decreased(1.08, 0.9, 0.6, 0.7 μm under ultrasonic amplitudes of 0, 1, 2, and 3 μm) and the tool wear state improved on the rake face under ULTVAM.展开更多
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool...Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.展开更多
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and...Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.展开更多
How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact...How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.展开更多
Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds ...Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.展开更多
The friction behavior of the hot filament chemical vapor deposition(HFCVD)diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment.Studies on the tribological ...The friction behavior of the hot filament chemical vapor deposition(HFCVD)diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment.Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide(WC-Co)substrates are rarely reported in available literatures,especially in the water lubricating conditions.In this paper,conventional microcrystalline diamond(MCD)and fine-grained diamond(FGD)films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer,where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions.Scanning electron microscopy(SEM),atomic force microscopy(AFM),surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films;SEM and energy dispersive X-ray(EDX)are used to investigate the worn region on the surfaces of both counterface balls and diamond films.The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value,and then gradually transits to a relative stable state.For a given counterface and a sliding condition,the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film.The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films.Furthermore,the effect of water lubricating on reducing friction coefficient is significant.For a given counterpart,the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition,relative to in dry sliding condition.This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system,replacing ofoil lubricating,in a variety of mechanical processing fields to implement the green production process.展开更多
The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. B...The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. Based on the discrete element method (DEM), a DEM model for die compaction was established, and the Hertz contact model was modified into an elastoplastic contact model that was more suitable for metal-powder compaction. The evolution of the topological properties of the contact network and its mechanism during powder compaction was explored using the elastoplastic contact model. The results demonstrate that the friction behavior between the particles is closely related to the topological properties of the contact network. Side wall friction results in smaller clustering coefficient (CC) and excess contact (EC) in the lower region near the side wall. Corresponding to this phenomenon, the upper region near the side wall has more high-stress particles when the major principal stress threshold was considered, and the CC and EC are significantly higher than those in the other regions. This study provides a theoretical basis for improving powder compaction behavior.展开更多
In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertne...In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.展开更多
Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and th...Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.展开更多
The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fibe...The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.展开更多
Friction behaviors of linear rolling guides(LRGs)are determined by many factors and are crucial for precision positioning.It is difficult to create an expression to describe the friction behaviors exactly and complete...Friction behaviors of linear rolling guides(LRGs)are determined by many factors and are crucial for precision positioning.It is difficult to create an expression to describe the friction behaviors exactly and completely.A new experimental method for measuring the friction behaviors of one LRG individually was developed,and linear motor direct drive technology is utilized in the experiment setup.The position signal is acquired by a grating,and the friction of the LRG is deduced by the product of the mass of the moving part and its acceleration.In the experiment,the LRG can move with the friction only,and the friction transition from normal rolling to prerolling stage was detected.The asperities’deformations were utilized to explain it.Hysteresis loops and internal loops were measured.The results indicate the non-local memory of the LRG,and the historical trajectory have an important impact on the friction behaviors of LRGs in the pre-rolling stage.展开更多
The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition ...The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition or surface characteristic were investigated through the sliding tests of locust on slippery plates, and sliding rubbing behaviors of locusts on the plate were observed by means of CCD video monitoring system. Poor sliding character of silicate glass to locust was verified, which is in accordance with the adhesive effect generated by secretion of locust feet pads on the smooth surface. And also, PVC plastic plate presents a poor sliding character to locusts, because the soft surface of PVC can permit claws of locust feet to engender mechanical interlock on the surface. The zinc plate shows a considerable slippery ratio for locusts because of the appropriate surface characteristic and material property. Photoelectric stimulation for resting locust can promote the movement of locust. Accordingly, the contact form of locust feet and abdomen on slippery plates is changed and contact area is reduced severely, so the sliding effect of locust on slippery plates is strengthened effectively. These results supply a suitable theoretical foundation for manufacturing locust slippery trapping plates and trapping units, and indicate the important role of photoelectric stimulating factors in biotribology.展开更多
Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on ...Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on the microstructure evolution of the joints were analyzed in detail. The relationship between pin length and mechanical properties of lap joints was studied. The results showed that the peak temperatures of all joints exceeded A c3, and martensite phases with similar morphologies were formed in the stir zones. These martensite retained good toughness due to the self-tempering effect. The formation of ferrite and tempered martensite was the main reason for the hardness reduction in heat-affected zone. The mechanical properties of the lap joints were determined by loading mode, features of lap interface and the joint defects. When the stir pin was inserted into the lower sheet with a depth of 0.4 mm, the lap joint exhibited the maximum tensile strength of 12.4 kN.展开更多
The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome ...The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.展开更多
In this study, fatigue properties and fracture mechanism of dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys friction stir welding (FSW) joints were investigated and the effect of the sheet configuration on the fatigue ...In this study, fatigue properties and fracture mechanism of dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys friction stir welding (FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al-Zn-Mg aluminum alloy was placed at the advancing side (AS). At 107 cycles, the fatigue strengths of Al-Zn-Mg-AS and Al-Mg- Si-AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al-Mg-Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al-Zn-Mg-AS joint was associated with the bridging effect of the bigger secondary phase particles.展开更多
This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-...This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.展开更多
In this study, the global and local tensile properties of friction stir welded AA2024 joints were measured with the aid of digital image correlation(DIC) method. A novel model was proposed to describe the global and l...In this study, the global and local tensile properties of friction stir welded AA2024 joints were measured with the aid of digital image correlation(DIC) method. A novel model was proposed to describe the global and local constitutive behavior of the joints based on DIC data. Different from conventional division of the zones across the joints, a new reasonable division was proposed, i.e. four zones including central low hardness zone(CLHZ), first heat affected zone(HAZ-I) close to TMAZ, second heat affected zone(HAZ-II)close to base metal(BM) and BM in term of the characteristic distribution of hardness. Results reveal that local true stress-true strain curves are different in each zone of interest. Plastic deformation of the joints is concentrated in CLHZ, where the lowest yield stress and the largest strain appear. Therefore, strain localization and necking occur here in a sequence. In addition, the global true stress-true strain curves and yield stresses at various ratios of the width of CLHZ zone to the gauge length are accurately predicted using the proposed constitutive model of the joints.展开更多
A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and ...A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin.展开更多
Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough a...Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.展开更多
Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribomet...Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.展开更多
基金the National Natural Science Foundation of China(No.52475516,52005166,91960203)the Young Core Instructor Project in the Higher Education Institutions of Henan Province(No.2023GGJS051)the National Science Fund for Distinguished Young Scholars of Henan Polytechnic University(No.J2022-5).
文摘Ti-6Al-4V is widely used in the aviation industry because of its high strength, and good heat resistance. However, severe tool wear on the rake face occurs during the milling of Ti-6Al-4V,which is caused by intense friction between the tool rake face and the chips. To investigate tool wear in the milling of Ti-6Al-4V, ultrasonic vibration is introduced, and a cutting force prediction model that considers tool-chip contact interface friction behavior in Ultrasonic Longitudinal-Torsional Vibration-Assisted Milling(ULTVAM) is proposed in this paper. First, the tool tip motion trajectory and dynamic cutting thickness under ULTVAM were analyzed calculated, and compared with those in Common Milling(CM). Subsequently, the effects of ultrasonic vibration on the shear force under the ultrasonic softening effect, the friction force, and the friction reversal force on the toolchip contact interface were investigated. A dynamic milling force model under ULTVAM was established before and after friction force reversal caused by ultrasonic longitudinal-torsional vibration. Finally, numerous experiments were conducted to validate the proposed model, and the experimental results indicated that the calculated dynamic milling forces agreed well with the measured values, with errors in the X and Y directions of 5.51% and 10.23%, respectively. In addition, the average roughness of the workpiece surface also decreased(1.08, 0.9, 0.6, 0.7 μm under ultrasonic amplitudes of 0, 1, 2, and 3 μm) and the tool wear state improved on the rake face under ULTVAM.
基金financial support from the National Key Research and Development Program of China (2019YFB2005401)National Natural Science Foundation of China (Nos. 91860207 and 52175420)+5 种基金Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project)(No. 2020CXGC010204)Shandong Provincial Natural Science Foundation of China (2021JMRH0301 and2021JMRH0304)Taishan Scholar FoundationInternational Partnership Scheme of the Bureau of the International Scientific Cooperation of the Chinese Academy of Sciences(No. 181722KYSB20180015)Research and Innovation Office of The Hong Kong Polytechnic University (BBX5and BBX7)funding support to the State Key Laboratories in Hong Kong
文摘Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.
基金financial support from the National Key Fundamental Research and Development Project of China (2014CB644002)。
文摘Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.
基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Foundation of China (Nos.51408311,51375225)
文摘How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.
基金This work was supported by the National Natural Science Foundation of China(No.52161028)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(No.20213BCJ22017).
文摘Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.
基金supported by National Natural Science Foundation of China(Grant No.50575135)Program for New Century Excellent Talents of Ministry of Education of China(Grant No.NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology,China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD)diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment.Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide(WC-Co)substrates are rarely reported in available literatures,especially in the water lubricating conditions.In this paper,conventional microcrystalline diamond(MCD)and fine-grained diamond(FGD)films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer,where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions.Scanning electron microscopy(SEM),atomic force microscopy(AFM),surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films;SEM and energy dispersive X-ray(EDX)are used to investigate the worn region on the surfaces of both counterface balls and diamond films.The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value,and then gradually transits to a relative stable state.For a given counterface and a sliding condition,the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film.The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films.Furthermore,the effect of water lubricating on reducing friction coefficient is significant.For a given counterpart,the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition,relative to in dry sliding condition.This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system,replacing ofoil lubricating,in a variety of mechanical processing fields to implement the green production process.
基金grateful to the Natural Science Foundation of Fujian Province(grant No.2020J01869)the Initial Scientific Research Fund in Fujian University of Technology(grant No.GY-Z19123)for providing financial support to this study.
文摘The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. Based on the discrete element method (DEM), a DEM model for die compaction was established, and the Hertz contact model was modified into an elastoplastic contact model that was more suitable for metal-powder compaction. The evolution of the topological properties of the contact network and its mechanism during powder compaction was explored using the elastoplastic contact model. The results demonstrate that the friction behavior between the particles is closely related to the topological properties of the contact network. Side wall friction results in smaller clustering coefficient (CC) and excess contact (EC) in the lower region near the side wall. Corresponding to this phenomenon, the upper region near the side wall has more high-stress particles when the major principal stress threshold was considered, and the CC and EC are significantly higher than those in the other regions. This study provides a theoretical basis for improving powder compaction behavior.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of Guangdong Province(2018A030313466)the assistance on the observation received from the Electron Microscope Center of the Shenzhen University.
文摘In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.
基金Funded by the National Natural Science Foundation of China(Nos.51671140 and 51474154)the Shanxi Province Programs for Graduate Education Reform(2015JG42)
文摘Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.
基金This work is supported by the National Natural Science Foundation of China (No. 11622217)
文摘The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.
基金supported by the Major State Basic Research Development Program of China (2009CB724200)
文摘Friction behaviors of linear rolling guides(LRGs)are determined by many factors and are crucial for precision positioning.It is difficult to create an expression to describe the friction behaviors exactly and completely.A new experimental method for measuring the friction behaviors of one LRG individually was developed,and linear motor direct drive technology is utilized in the experiment setup.The position signal is acquired by a grating,and the friction of the LRG is deduced by the product of the mass of the moving part and its acceleration.In the experiment,the LRG can move with the friction only,and the friction transition from normal rolling to prerolling stage was detected.The asperities’deformations were utilized to explain it.Hysteresis loops and internal loops were measured.The results indicate the non-local memory of the LRG,and the historical trajectory have an important impact on the friction behaviors of LRGs in the pre-rolling stage.
基金Supported by the Doctoral Fund of Ministry of Education of China (Grant Nos. 200600 and 19012)National Natural Science Foundation of China (Grant No. 50775412)
文摘The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition or surface characteristic were investigated through the sliding tests of locust on slippery plates, and sliding rubbing behaviors of locusts on the plate were observed by means of CCD video monitoring system. Poor sliding character of silicate glass to locust was verified, which is in accordance with the adhesive effect generated by secretion of locust feet pads on the smooth surface. And also, PVC plastic plate presents a poor sliding character to locusts, because the soft surface of PVC can permit claws of locust feet to engender mechanical interlock on the surface. The zinc plate shows a considerable slippery ratio for locusts because of the appropriate surface characteristic and material property. Photoelectric stimulation for resting locust can promote the movement of locust. Accordingly, the contact form of locust feet and abdomen on slippery plates is changed and contact area is reduced severely, so the sliding effect of locust on slippery plates is strengthened effectively. These results supply a suitable theoretical foundation for manufacturing locust slippery trapping plates and trapping units, and indicate the important role of photoelectric stimulating factors in biotribology.
基金supported by the National Natural Science Foundation of China (Nos. 51671190, 51774085 and 51471171).
文摘Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on the microstructure evolution of the joints were analyzed in detail. The relationship between pin length and mechanical properties of lap joints was studied. The results showed that the peak temperatures of all joints exceeded A c3, and martensite phases with similar morphologies were formed in the stir zones. These martensite retained good toughness due to the self-tempering effect. The formation of ferrite and tempered martensite was the main reason for the hardness reduction in heat-affected zone. The mechanical properties of the lap joints were determined by loading mode, features of lap interface and the joint defects. When the stir pin was inserted into the lower sheet with a depth of 0.4 mm, the lap joint exhibited the maximum tensile strength of 12.4 kN.
文摘The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.
基金supported by the International S&T Cooperation Program of China (ISTCP, No. 2012DFR50580)
文摘In this study, fatigue properties and fracture mechanism of dissimilar Al-Mg-Si/Al-Zn-Mg aluminum alloys friction stir welding (FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al-Zn-Mg aluminum alloy was placed at the advancing side (AS). At 107 cycles, the fatigue strengths of Al-Zn-Mg-AS and Al-Mg- Si-AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al-Mg-Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al-Zn-Mg-AS joint was associated with the bridging effect of the bigger secondary phase particles.
基金Financial support by State Key Lab of Advanced Welding and Joining,Harbin Institute of Technology
文摘This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.
基金financial support from the National Natural Science Foundation of China (No. 51574196)the Research Fund of the State Key Laboratory of Solidification Processing (Nos. 108-QP-2014, 122-QZ-2015)the 111 Project (No. B08040)
文摘In this study, the global and local tensile properties of friction stir welded AA2024 joints were measured with the aid of digital image correlation(DIC) method. A novel model was proposed to describe the global and local constitutive behavior of the joints based on DIC data. Different from conventional division of the zones across the joints, a new reasonable division was proposed, i.e. four zones including central low hardness zone(CLHZ), first heat affected zone(HAZ-I) close to TMAZ, second heat affected zone(HAZ-II)close to base metal(BM) and BM in term of the characteristic distribution of hardness. Results reveal that local true stress-true strain curves are different in each zone of interest. Plastic deformation of the joints is concentrated in CLHZ, where the lowest yield stress and the largest strain appear. Therefore, strain localization and necking occur here in a sequence. In addition, the global true stress-true strain curves and yield stresses at various ratios of the width of CLHZ zone to the gauge length are accurately predicted using the proposed constitutive model of the joints.
基金This work is supported by the National Natural Science Foundation of China (No. 51204111 ), the Natural Science Foundation of Liaoning Province ( No. 2013024004 and No. 2014024008).
文摘A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275302,51005154)Chenguang Program of Shanghai Municipal Education Commission of China(Grant No.12CG11)
文摘Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.
基金the National Natural Science Foundation of China(No.50375046 and No.50432020)
文摘Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.