Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model ...Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space.展开更多
基金Supported by the National Natural Science Foundation of China ( No.60474022)Henan Innovation Project for University Prominent Research Talents (No.2007KYCX018)
文摘Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space.
文摘选择性集成通过选择部分基分类器参与集成,从而提高集成分类器的泛化能力,降低预测开销.但已有的选择性集成算法普遍耗时较长,将数据挖掘的技术应用于选择性集成,提出一种基于FP-Tree(frequent pattern tree)的快速选择性集成算法:CPM-EP(coverage based pattern mining for ensemble pruning).该算法将基分类器对校验样本集的分类结果组织成一个事务数据库,从而使选择性集成问题可转化为对事务数据集的处理问题.针对所有可能的集成分类器大小,CPM-EP算法首先得到一个精简的事务数据库,并创建一棵FP-Tree树保存其内容;然后,基于该FP-Tree获得相应大小的集成分类器.在获得的所有集成分类器中,对校验样本集预测精度最高的集成分类器即为算法的输出.实验结果表明,CPM-EP算法以很低的计算开销获得优越的泛化能力,其分类器选择时间约为GASEN的1/19以及Forward-Selection的1/8,其泛化能力显著优于参与比较的其他方法,而且产生的集成分类器具有较少的基分类器.