Application of Frequency-Spectrum analysis to a.c, oscillopolarogram using Fourier transform technique is given in this paper. Harmonic equations of E-t curve of base solution are derived.The measurement of concentrat...Application of Frequency-Spectrum analysis to a.c, oscillopolarogram using Fourier transform technique is given in this paper. Harmonic equations of E-t curve of base solution are derived.The measurement of concentration of the depolarizer by means of the second and third harmonio potentials were also described.展开更多
On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground...On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground equipment were studied at different work conditions. The result indicates that the noise source intensity surpasses the noise limit requirement of 85 dBA completely. Nearly 70% noise sources exceed the noise limit of 90 dBA, and some are over 100 dBA. Noise attenua- tion in semi-free field environment on the ground is significantly different from underground far-field environment of noise source in coal mines. Noise of these regions, where staffs are long and highly concentrated, exceeds 85 dBA, the basic noise limit. The noise frequency-spectrum presents the wideband characteristics. Especially in the main frequency of the language communication 500, 1 000 and 2 000 Hz, the octave band of noise performs obviously.展开更多
In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber spa...In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation. The physical properties of the Jacobian incorporating the effects of water depths are discussed. The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct. It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.展开更多
文摘Application of Frequency-Spectrum analysis to a.c, oscillopolarogram using Fourier transform technique is given in this paper. Harmonic equations of E-t curve of base solution are derived.The measurement of concentration of the depolarizer by means of the second and third harmonio potentials were also described.
基金Supported by the National Natural Science Foundation of China (50974061) the Natural Science Foundation of Hebei Province (E2009001420)
文摘On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground equipment were studied at different work conditions. The result indicates that the noise source intensity surpasses the noise limit requirement of 85 dBA completely. Nearly 70% noise sources exceed the noise limit of 90 dBA, and some are over 100 dBA. Noise attenua- tion in semi-free field environment on the ground is significantly different from underground far-field environment of noise source in coal mines. Noise of these regions, where staffs are long and highly concentrated, exceeds 85 dBA, the basic noise limit. The noise frequency-spectrum presents the wideband characteristics. Especially in the main frequency of the language communication 500, 1 000 and 2 000 Hz, the octave band of noise performs obviously.
基金supported by the Science Council,with contract number NSC95-2221-E-006-462Research Center of Ocean Environment and Technology,under the contract NCKU-NSYSU
文摘In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation. The physical properties of the Jacobian incorporating the effects of water depths are discussed. The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct. It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.