This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ...With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.展开更多
This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of mul...This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.展开更多
An optical frequency comb(OFC)frequency-division multiplexing dispersive interference multichannel distance measurement method is proposed.Based on the OFC dispersive interference,the wide OFC spectrum is divided into...An optical frequency comb(OFC)frequency-division multiplexing dispersive interference multichannel distance measurement method is proposed.Based on the OFC dispersive interference,the wide OFC spectrum is divided into multiple channels using a wavelength-division multiplexer.Under the existing light source and spectrometer,a single interference system can realize six channels of the high-precision parallel absolute distance measurement.The influence of the spectrum width and shape on the performance of the distance measurement channel is analyzed.The ranging accuracy of six channels is higher than±4μm under the optimization of a nonuniform discrete Fourier transform and Hanning window.展开更多
The rapidly growing global data usage has demanded more efficient ways to utilize the scarce electromagnetic spectrum resource. Recent research has focused on the development of efficient multiplexing techniques in th...The rapidly growing global data usage has demanded more efficient ways to utilize the scarce electromagnetic spectrum resource. Recent research has focused on the development of efficient multiplexing techniques in the millimeter-wave band(1-10 mm, or 30-300 GHz) due to the promise of large available bandwidth for future wireless networks. Frequency-division multiplexing is still one of the most commonly-used techniques to maximize the transmission capacity of a wireless network.Based on the frequency-selective tunnelling effect of the low-loss epsilon-near-zero metamaterial waveguide, we numerically and experimentally demonstrate five-channel frequency-division multiplexing and demultiplexing in the millimeter-wave range.We show that this device architecture offers great flexibility to manipulate the filter Q-factors and the transmission spectra of different channels, by changing of the epsilon-near-zero metamaterial waveguide topology and by adding a standard waveguide between two epsilon-near-zero channels. This strategy of frequency-division multiplexing may pave a way for efficiently allocating the spectrum for future communication networks.展开更多
Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the d...Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.展开更多
Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneous...Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.展开更多
Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describ...Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.展开更多
We propose a two-cascaded, constant-resistance, symmetrical bridged-T amplitude equalizer for a high-speed visible light communication(VLC) system. With the pre-equalization circuit, the-3 d B bandwidth of the VLC s...We propose a two-cascaded, constant-resistance, symmetrical bridged-T amplitude equalizer for a high-speed visible light communication(VLC) system. With the pre-equalization circuit, the-3 d B bandwidth of the VLC system can be extended from 12 to 235 MHz using a commercially available phosphorescent white light-emitting diode(LED), a blue filter, and a low-cost PIN photodiode. The data rate is 1.20 Gbit/s, exploiting 16-quadrature amplitude modulation-orthogonal frequency-division multiplexing with a 300 MHz modulation bandwidth over50 cm of free-space transmission under the pre-forward error correction limit of 3.8 × 10^-3. To our knowledge,this is the highest-3 d B bandwidth and the highest data rate ever achieved by using a pre-equalization circuit and white LED in a VLC system.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and re...The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.展开更多
The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional...The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.展开更多
Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essentia...Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.展开更多
We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters i...We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International ...Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use(ICH)guildline Q5A(R2)from September 2022 highlights the inclusion of viral vector-based gene therapy products in safety discussions,emphasizing controls in material sourcing,testing,and viral clearance[1].Detecting adventitious virus contamination is complex due to the unique characteristics of gene therapy products and the limitations of routine testing methods.The US Food and Drug Administration(FDA)recommends incorporating routine and specific virus detection methods,including those outlined in various pharmacopeias.Existing control methods have limitations,prompting the need for highly sensitive and broad-spectrum detection approaches.Unlike traditional biological products,gene therapy products primarily consist of live viruses,necessitating methods that distinguish between the main virus and adventitious viruses.Current virus detection techniques,such as polymerase chain reaction(PCR),sequencing,mass spectrometry,and DNA microarrays[2e4],have their drawbacks.展开更多
Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue b...Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].展开更多
The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed ...The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied. This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber, making the FBG sensors more applicable in the aerospace health monitoring engineering. The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low. And hence, an inexpensive large-scale distributed sensing system based on this method can be realized, When evaluating the multiplexing ability of this system, we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.展开更多
Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division mul...Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
基金supported by the National Natural Science Foundation of China under Grant Nos.62022022 and 62101107the National Key R&D Program of China under Grant No.2018YFB1801502+1 种基金China Postdoctoral Science Foundation under Grant No.2021TQ0057ZTE Industry-Uni⁃versity-Institute Cooperation Funds.
文摘With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.
基金ACKNOWLEDGEMENT This work was supported in part by the Na- tional Natural Science Foundation of China un- der Grants No. 60972072, No. 61340033 and the 111 Project of China under Grant No. B08038.
文摘This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.
基金the finanical support from National Natural Science Foundation of China(52127810,51835007,51721003).
文摘An optical frequency comb(OFC)frequency-division multiplexing dispersive interference multichannel distance measurement method is proposed.Based on the OFC dispersive interference,the wide OFC spectrum is divided into multiple channels using a wavelength-division multiplexer.Under the existing light source and spectrometer,a single interference system can realize six channels of the high-precision parallel absolute distance measurement.The influence of the spectrum width and shape on the performance of the distance measurement channel is analyzed.The ranging accuracy of six channels is higher than±4μm under the optimization of a nonuniform discrete Fourier transform and Hanning window.
基金supported by the National Natural Science Foundation of China(Grant Nos.11734012,62105213,12074267,516022053,and 12174265)the Young Innovative Talents Project of Universities in Guangdong Province(Grant No.2019KQNCX123)+4 种基金the Guangdong Basic and Applied Basic Research Fund(Grant No.2020A1515111037)the Science and Technology Project of Guangdong(Grant No.2020B010190001)the Guangdong Natural Science Foundation(Grant No.2020A1515010467)the Shenzhen Fundamental Research Program(Grant No.20200814113625003)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2020001A06)。
文摘The rapidly growing global data usage has demanded more efficient ways to utilize the scarce electromagnetic spectrum resource. Recent research has focused on the development of efficient multiplexing techniques in the millimeter-wave band(1-10 mm, or 30-300 GHz) due to the promise of large available bandwidth for future wireless networks. Frequency-division multiplexing is still one of the most commonly-used techniques to maximize the transmission capacity of a wireless network.Based on the frequency-selective tunnelling effect of the low-loss epsilon-near-zero metamaterial waveguide, we numerically and experimentally demonstrate five-channel frequency-division multiplexing and demultiplexing in the millimeter-wave range.We show that this device architecture offers great flexibility to manipulate the filter Q-factors and the transmission spectra of different channels, by changing of the epsilon-near-zero metamaterial waveguide topology and by adding a standard waveguide between two epsilon-near-zero channels. This strategy of frequency-division multiplexing may pave a way for efficiently allocating the spectrum for future communication networks.
基金supported by the National Key Research and Development Program of China(2023YFB2804704)the National Natural Science Foundation of China(12174292,12374278,and 62105250).
文摘Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.
基金jointly supported by the National Natural Science Foundation of China (U21A20495)Natural Science Foundation of Jiangsu Province (BG2024023)+1 种基金National Key Research and Development Program of China (2022YFE0112000)111 Project (D17018)。
文摘Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.
基金Supported by the Basic Research Foundation of Tsinghua Na-tional Laboratory for Information Science and Technology (TNList) the Major Program of the National Natural Science Foundation of China (No. 60496311)
文摘Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China (No. 61177071)the National "863" Program of China (No. 2013AA013603)
文摘We propose a two-cascaded, constant-resistance, symmetrical bridged-T amplitude equalizer for a high-speed visible light communication(VLC) system. With the pre-equalization circuit, the-3 d B bandwidth of the VLC system can be extended from 12 to 235 MHz using a commercially available phosphorescent white light-emitting diode(LED), a blue filter, and a low-cost PIN photodiode. The data rate is 1.20 Gbit/s, exploiting 16-quadrature amplitude modulation-orthogonal frequency-division multiplexing with a 300 MHz modulation bandwidth over50 cm of free-space transmission under the pre-forward error correction limit of 3.8 × 10^-3. To our knowledge,this is the highest-3 d B bandwidth and the highest data rate ever achieved by using a pre-equalization circuit and white LED in a VLC system.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.
基金supported by a Natural Sciences and Engineering Research Council(NSERC)-sponsored Industrial Research Chair program,an NSERC Discovery Grantin part by the Fonds de recherche du Québec Nature et technologies(FRQNT)Doctoral Fellowship of Amir Afshani funded by the Government of Québec Province.
文摘The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030009)the National Natural Science Foundation of China (Grant Nos.61935013,62375181,and 61975133)+1 种基金the Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Shenzhen Peacock Plan (Grant No.KQTD20170330110444030).
文摘The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.
文摘Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.
基金supported by the Shenzhen Science and Technology Program(No.JCYJ20210324121002008)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+5 种基金the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1204500,and 2022YFA1204504)the Natural Science Foundation of Tianjin(Nos.22JCYBJC01290 and 23JCQNJC01440)the Key Project of Natural Science Foundation of Tianjin(No.22JCZDJC00120)the Fundamental Research Funds for the Central Universities,Nankai University(Nos.BEG124901 and BEG124401)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110319)the Key Science and Technology Program of Henan Province(No.242102210171).
文摘We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
基金financially supported by Beijing Municipal Science&Technology Commission,China(Grant No.:Z221100007922015)Youth Development Research Foundation of National Institutes for Food and Drug Control,China(Grant No.:2020B1).
文摘Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use(ICH)guildline Q5A(R2)from September 2022 highlights the inclusion of viral vector-based gene therapy products in safety discussions,emphasizing controls in material sourcing,testing,and viral clearance[1].Detecting adventitious virus contamination is complex due to the unique characteristics of gene therapy products and the limitations of routine testing methods.The US Food and Drug Administration(FDA)recommends incorporating routine and specific virus detection methods,including those outlined in various pharmacopeias.Existing control methods have limitations,prompting the need for highly sensitive and broad-spectrum detection approaches.Unlike traditional biological products,gene therapy products primarily consist of live viruses,necessitating methods that distinguish between the main virus and adventitious viruses.Current virus detection techniques,such as polymerase chain reaction(PCR),sequencing,mass spectrometry,and DNA microarrays[2e4],have their drawbacks.
基金supported by the National Natural Science Foundation of China(Nos.12474418,U22A20398,and 22135008).
文摘Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.
基金Foundation item: National Natural Science Foundation of China (10376001)
文摘The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied. This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber, making the FBG sensors more applicable in the aerospace health monitoring engineering. The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low. And hence, an inexpensive large-scale distributed sensing system based on this method can be realized, When evaluating the multiplexing ability of this system, we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.
基金financially supported by the Russian Foundation for Basic Research(grant No.18-29-20045)for WDM,MDM and hybrid WDM-MDM,WDM-PDM sectionsthe Russian Science Foundation(grant No.21-79-20075)for PDM,OAMM and hybrid PDM-MDM sectionsthe Ministry of Science and Higher Education of the Russian Federation under the FSRC"Crystallography and Photonics"of the Russian Academy of Sciences(the state task No.007-GZ/Ch3363/26)for comparative analysis.
文摘Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.