期刊文献+
共找到224,437篇文章
< 1 2 250 >
每页显示 20 50 100
Frequency optimization for electrodes in implantable brain-computer interfaces 被引量:1
1
作者 CHEN Han LIU Xiangyu +2 位作者 CHENG Jiajun QIN Jiangfan ZHANG Xueli 《Journal of Southeast University(English Edition)》 2025年第3期366-374,共9页
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the... Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm. 展开更多
关键词 brain-computer interfaces electromagnetic simulation electroencephalography electrodes power den-sity specific absorption rate
在线阅读 下载PDF
Uncovering the catalyst/electrolyte interfacial process by frequency dispersion of capacitance
2
作者 Jinzhen Huang Erica D.Clinton +3 位作者 Kenneth Crossley Juliana Bruneli Falqueto Thomas J.Schmidt Emiliana Fabbri 《Journal of Energy Chemistry》 2025年第9期199-209,I0007,共12页
Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalys... Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship. 展开更多
关键词 frequency dispersion of capacitance Electrochemical impedance spectroscopy Catalyst/electrolyte interface interfacial capacitance Oxygen evolution reaction
在线阅读 下载PDF
Recent Advances in Analyzing Protein and Peptide Structures at Interfaces Using Vibrational Sum-Frequency Generation
3
作者 Baihui Wang Yimin Bai +4 位作者 Jiahui Peng Miaomiao Zhang Weiting Zhang Hongtao Bian Yu Fang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第2期398-410,I0105,共14页
The structure of protein and peptide at interfaces plays a crucial role in various biological processes and technological advancements.Understanding these structures is critical for diagnosing diseases,drug delivery,a... The structure of protein and peptide at interfaces plays a crucial role in various biological processes and technological advancements.Understanding these structures is critical for diagnosing diseases,drug delivery,and developing biomaterials.However,the complexity of these systems and limitations in analytical tools have hindered the in-depth exploration.Despite significant efforts in determining protein structures using advanced techniques like X-ray crystallography and cryo-electron microscopy,the understanding of surface-bound protein structures in real conditions remains relatively limited,posing a current challenge in this field.Vibrational sum frequency generation(SFG)spectroscopy has been developed as a versatile method for elucidating molecular structures of proteins across interfaces.This review is intended to introduce the basic principle of SFG spectroscopy,discuss its current advancements in phase measurement,and showcase recent examples(2021-2023)illustrating SFG’s ability in revealing the molecular structure of peptides and proteins at interfaces.This concise review aims to establish a foundation for future studies and applications exploring different types of peptides and proteins at interfaces using SFG. 展开更多
关键词 PROTEIN PEPTIDE Structure interface Sum frequency generation
在线阅读 下载PDF
Manipulating polarization attenuation in NbS_(2)-NiS_(2)nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands 被引量:1
4
作者 Yiru Fu Yuping Wang +6 位作者 Junye Cheng Yao Li Jing Wang Yongheng Jin Deqing Zhang Guangping Zheng Maosheng Cao 《Nano Materials Science》 CSCD 2024年第6期794-804,共11页
Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of... Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials. 展开更多
关键词 interface engineering Electromagnetic wave absorption HETEROSTRUCTURES interfacial polarization
在线阅读 下载PDF
Unraveling ethylene carbonate-propylene carbonate disparity at electrode interface using femtosecond sum frequency generation vibrational spectroscopy 被引量:1
5
作者 Zhuo Wang Xiaoxuan Zheng +1 位作者 Zijian Ni Shuji Ye 《Chinese Journal of Chemical Physics》 CSCD 2024年第6期729-736,I0001-I0007,I0041,共16页
Ethylene carbonate(EC)is an important electrolyte used in lithium-ion batteries due to its excellent electrochemical performance.However,propylene carbonate(PC)differs from EC by only one methyl substituent and exhibi... Ethylene carbonate(EC)is an important electrolyte used in lithium-ion batteries due to its excellent electrochemical performance.However,propylene carbonate(PC)differs from EC by only one methyl substituent and exhibits markedly poorproperties.The EC-PC disparity is still poorly understood at the molecular level.In this study,we demonstrated that femtosecond broadband sum frequency generation vibrational spectroscopy(SFG-VS)with simultaneous measurement of multiple polarization combinations provides a powerful probe for investigating the physicochemical processes at the electrode-electrolyte interface during the charge-discharge cycles of lithium batteries.Using monolayer graphene as the working electrode,we observed the distinct reaction outcomes of EC and PC on the electrode surface.The interfacial reaction of EC occurred only in the first charge-discharge cycle,while the interfacial reaction of PC was ongoing along with the charge-discharge cycles,which explains why EC is a better electrolyte choice than PC.This study provides direct experimental evidence in elucidating the differences in interfacial performance between EC and PC,facilitating a deeper understanding of battery interface reactions and guiding the design of high-performance lithium-ion batteries. 展开更多
关键词 Sum frequency generation vibrational spectroscopy Ethylene carbonate Propylene carbonate Solid electrolyte interphase
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
6
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
7
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries 被引量:2
8
作者 Zhuobin Han Phornphimon Maitarad +11 位作者 Nuttapon Yodsin Baogang Zhao Haoyu Ma Kexin Liu Yongfeng Hu Siriporn Jungsuttiwong Yumei Wang Li Lu Liyi Shi Shuai Yuan Yongyao Xia Yingying Lv 《Nano-Micro Letters》 2025年第8期548-563,共16页
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that... Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries. 展开更多
关键词 Catalytic interface MESOPOROUS Inorganic-rich SEI Silicon anode Lithium-ion batteries
在线阅读 下载PDF
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:2
9
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Co-regulation effect of solvation and interface of pyridine derivative enabling highly reversible zinc anode 被引量:1
10
作者 Binrui Xu Guangbin Wang +3 位作者 Yong Liu Quanan Li Fengzhang Ren Jianmin Ma 《Journal of Materials Science & Technology》 2025年第1期1-9,共9页
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin... The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode. 展开更多
关键词 Zn anode Pyridine derivative Electrolyte additive Solvation regulation interface modification
原文传递
Pore-scale investigation of forced imbibition in porous rocks through interface curvature and pore topology analysis 被引量:1
11
作者 Jianchao Cai Xiangjie Qin +2 位作者 Han Wang Yuxuan Xia Shuangmei Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期245-257,共13页
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa... Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping. 展开更多
关键词 Forced imbibition Porous rocks interface dynamics Pore topology Residual fluid distribution
在线阅读 下载PDF
Bulging Performance and Quality Control of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Friction
12
作者 GAO Tiejun GAO Bowen +1 位作者 LI Weijie ZHANG Jiabin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期258-264,共7页
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s... In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal. 展开更多
关键词 tailor-welded sheets overlapping sheet BULGING interface friction weld seam stress
原文传递
Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand 被引量:1
13
作者 ZHANG Jing LI Xuejian +2 位作者 LI Gang YUAN Ye YANG Dong 《Journal of Southeast University(English Edition)》 2025年第1期44-50,共7页
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ... To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring. 展开更多
关键词 steel strand ultrasonic guided wave plateau frequency mode separation stress monitoring
在线阅读 下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
14
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
在线阅读 下载PDF
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions 被引量:1
15
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 SLOPE Concrete stabilizing piles interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
16
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
在线阅读 下载PDF
DFEFM:Fusing frequency correlation and mel features for robust edge bird audio detection 被引量:1
17
作者 Yingqi Wang Luyang Zhang +2 位作者 Jiangjian Xie Junguo Zhang Rui Zhu 《Avian Research》 2025年第2期199-207,共9页
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains... Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research. 展开更多
关键词 Bird audio detection Dual-feature fusion frequency correlation matrix Passive acoustic monitoring
在线阅读 下载PDF
Effect of Seismic Bedrock Interface Depth on Surface Ground Motion Parameters of Deep Overburden Sites
18
作者 Yiyao Shen Xiuli Du +1 位作者 Liyun Li Dong-Mei Zhang 《Journal of Earth Science》 2025年第4期1623-1631,共9页
Ground response analysis and determination of site-specific ground motion parameters are necessary for evaluating seismic loads to enable sustainable design of aboveground and underground structures,particularly in de... Ground response analysis and determination of site-specific ground motion parameters are necessary for evaluating seismic loads to enable sustainable design of aboveground and underground structures,particularly in deep overburden sites.This study investigates the influence of bedrock interface conditions and depth of soil deposits on obtained site-specific ground motion parameters.Employing the one-dimensional seismic response analysis program SOILQUAKE,the ground responses of five representative soil profiles and 1050 case studies are calculated considering three different site models of seismic input interfaces.The analysis employs the actual bedrock interface with a shear wave velocity of 760 m/s as the reference input bedrock interface.The results illustrate that the selection of the bedrock interface condition significantly affects the seismic response on the ground surface of deep overburden sites.Specifically,the ground surface acceleration response spectra at longer periods are notably smaller compared to those at the actual bedrock site.This may present a challenge for designing long-period high-rise buildings situated in deep overburden sites.It is recommended to select a seismic input bedrock interface closely approximating the actual bedrock depth when conducting seismic response analyses for deep overburden sites. 展开更多
关键词 seismic bedrock interface deep overburden sites soilquake frequency consistent method seismic response
原文传递
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
19
作者 SUN Zhi-peng MA Cheng +2 位作者 WANG Ji-tong QIAO Wen-ming LING Li-cheng 《新型炭材料(中英文)》 北大核心 2025年第2期440-455,共16页
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme... The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization. 展开更多
关键词 Thermal interface material Mesocarbon microbeads Through-plane thermal conductivity
在线阅读 下载PDF
Effects of Thermal Aging on Microstructure and Mechanical Properties of Interface of Hot Isostatic Pressing Densified Low Alloy Steel with Inconel 690 Cladding
20
作者 Yu Lei Cao Rui +3 位作者 Ma Jinyuan Yan Yingjie Dong Hao Wang Caiqin 《稀有金属材料与工程》 北大核心 2025年第4期879-885,共7页
The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results s... The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation. 展开更多
关键词 interface thermal aging microstructure mechanical properties hot isostatic pressing densification
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部