Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the...Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.展开更多
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution an...The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.展开更多
Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalys...Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship.展开更多
It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of...It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.展开更多
Sum frequency generation spectroscopy(SFG) has been widely used to study the interfacial chemistry of aqueous salt solutions of biological or environmental importance. Most of the SFG data analysis used the same bul...Sum frequency generation spectroscopy(SFG) has been widely used to study the interfacial chemistry of aqueous salt solutions of biological or environmental importance. Most of the SFG data analysis used the same bulk refractive index for different salt concentrations despite of the variations of the refractive indices. Here we systematically investigate the influence of the refractive index on the SFG intensities at various experimental conditions. It is discovered that the SFG intensities are the most sensitive to the refractive index at solid/liquid interfaces nearby the total internal reflection geometries. At air/liquid interfaces, the effect of the refractive indices is also nonegligible. Consequently some important SFG results, such as the response of water structures to the ionic strength at the SiO2/aqueous interfaces, are necessary to be reevaluated. These conclusions on the effect of the small variations of the refractive index are generally useful for the common practice of SFG data analysis.展开更多
The structure of protein and peptide at interfaces plays a crucial role in various biological processes and technological advancements.Understanding these structures is critical for diagnosing diseases,drug delivery,a...The structure of protein and peptide at interfaces plays a crucial role in various biological processes and technological advancements.Understanding these structures is critical for diagnosing diseases,drug delivery,and developing biomaterials.However,the complexity of these systems and limitations in analytical tools have hindered the in-depth exploration.Despite significant efforts in determining protein structures using advanced techniques like X-ray crystallography and cryo-electron microscopy,the understanding of surface-bound protein structures in real conditions remains relatively limited,posing a current challenge in this field.Vibrational sum frequency generation(SFG)spectroscopy has been developed as a versatile method for elucidating molecular structures of proteins across interfaces.This review is intended to introduce the basic principle of SFG spectroscopy,discuss its current advancements in phase measurement,and showcase recent examples(2021-2023)illustrating SFG’s ability in revealing the molecular structure of peptides and proteins at interfaces.This concise review aims to establish a foundation for future studies and applications exploring different types of peptides and proteins at interfaces using SFG.展开更多
Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of...Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials.展开更多
Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in...Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.展开更多
The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute or...The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.展开更多
For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To...For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance (Rs) on high-frequency (SMHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the CHF-CLF capacitance and the conductance method are 2 ×1012 e V-1 cm-2 and 0.94 × 1012 eV-1 cm-2, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.展开更多
Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization depen...Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.展开更多
Ethylene carbonate(EC)is an important electrolyte used in lithium-ion batteries due to its excellent electrochemical performance.However,propylene carbonate(PC)differs from EC by only one methyl substituent and exhibi...Ethylene carbonate(EC)is an important electrolyte used in lithium-ion batteries due to its excellent electrochemical performance.However,propylene carbonate(PC)differs from EC by only one methyl substituent and exhibits markedly poorproperties.The EC-PC disparity is still poorly understood at the molecular level.In this study,we demonstrated that femtosecond broadband sum frequency generation vibrational spectroscopy(SFG-VS)with simultaneous measurement of multiple polarization combinations provides a powerful probe for investigating the physicochemical processes at the electrode-electrolyte interface during the charge-discharge cycles of lithium batteries.Using monolayer graphene as the working electrode,we observed the distinct reaction outcomes of EC and PC on the electrode surface.The interfacial reaction of EC occurred only in the first charge-discharge cycle,while the interfacial reaction of PC was ongoing along with the charge-discharge cycles,which explains why EC is a better electrolyte choice than PC.This study provides direct experimental evidence in elucidating the differences in interfacial performance between EC and PC,facilitating a deeper understanding of battery interface reactions and guiding the design of high-performance lithium-ion batteries.展开更多
Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed ga...Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).展开更多
基金The Open Project of State Key Laboratory of Smart Grid Protection and Operation Control in 2022(No.SGNR0000KJJS2302150).
文摘Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.62450006,62304217,62274157,62127807,62234011,62034008,62074142,62074140)Tianshan Innovation Team Program(Grant No.2022TSYCTD0005)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0880000)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2023124,Y2023032)。
文摘The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.
基金Swiss National Science Foundation through its PRIM A grant(grant No.PR00P2_193111)the NCCR MARVEL,a National Centre of Competence in Researchfunded by the Swiss National Science Foundation。
文摘Electrochemical impedance spectroscopy(EIS)is a widely used technique to monitor the electrical properties of a catalyst under electrocatalytic conditions.Although it is extensively used for research in electrocatalysis,its effectiveness and power have not been fully harnessed to elucidate complex interfacial processes.Herein,we use the frequency dispersion parameter,n,which is extracted from EIS measurements(C_(s)=af^(n+1),-2<n<-1),to describe the dispersion characteristics of capacitance and interfacial properties of Co_(3)O_(4) before the onset of oxygen evolution reaction(OER)in alkaline conditions.We first prove that the n-value is sensitive to the interfacial electronic changes associated with Co redox processes and surface reconstruction.The n-value decreases by increasing the specific/active surface area of the catalysts.We further modify the interfacial properties by changing different components,i.e.,replacing the proton with deuterium,adding ethanol as a new oxidant,and changing the cation in the electrolyte.Intriguingly,the n-value can identify different influences on the interfacial process of proton transfer,the decrease and blocking of oxidized Co species,and the interfacial water structure.We demonstrate that the n-value extracted from EIS measurements is sensitive to the kinetic isotope effect,electrolyte cation,adsorbate surface coverage of oxidized Co species,and the interfacial water structure.Thus,it can be helpful to differentiate the multiple factors affecting the catalyst interface.These findings convey that the frequency dispersion of capacitance is a convenient and useful method to uncover the interfacial properties under electrocatalytic conditions,which helps to advance the understanding of the interfaceactivity relationship.
文摘It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.
基金financially supported by the National Natural Science Foundation of China(Nos.21227802,21303216 and21473217)
文摘Sum frequency generation spectroscopy(SFG) has been widely used to study the interfacial chemistry of aqueous salt solutions of biological or environmental importance. Most of the SFG data analysis used the same bulk refractive index for different salt concentrations despite of the variations of the refractive indices. Here we systematically investigate the influence of the refractive index on the SFG intensities at various experimental conditions. It is discovered that the SFG intensities are the most sensitive to the refractive index at solid/liquid interfaces nearby the total internal reflection geometries. At air/liquid interfaces, the effect of the refractive indices is also nonegligible. Consequently some important SFG results, such as the response of water structures to the ionic strength at the SiO2/aqueous interfaces, are necessary to be reevaluated. These conclusions on the effect of the small variations of the refractive index are generally useful for the common practice of SFG data analysis.
基金Hongtao Bian acknowledges the support from the National Natural Science Foundation of China(No.22173054)Hongtao Bian also thanks the financial support from Fundamental Research Funds for the Central Universities(GK202001009)+2 种基金Natural Science Fundamental Research Plan of Shaanxi Province(No.2024JC-JCQN-15)111 Project(B14041)Program for Changjiang Scholars and the Innovative Research Team in University(IRT-14R33).
文摘The structure of protein and peptide at interfaces plays a crucial role in various biological processes and technological advancements.Understanding these structures is critical for diagnosing diseases,drug delivery,and developing biomaterials.However,the complexity of these systems and limitations in analytical tools have hindered the in-depth exploration.Despite significant efforts in determining protein structures using advanced techniques like X-ray crystallography and cryo-electron microscopy,the understanding of surface-bound protein structures in real conditions remains relatively limited,posing a current challenge in this field.Vibrational sum frequency generation(SFG)spectroscopy has been developed as a versatile method for elucidating molecular structures of proteins across interfaces.This review is intended to introduce the basic principle of SFG spectroscopy,discuss its current advancements in phase measurement,and showcase recent examples(2021-2023)illustrating SFG’s ability in revealing the molecular structure of peptides and proteins at interfaces.This concise review aims to establish a foundation for future studies and applications exploring different types of peptides and proteins at interfaces using SFG.
基金supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project and the Fundamental Research Fund of Heilongjiang Provincial University(145309101)。
文摘Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials.
文摘Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.
基金Ⅵ. ACKNOWLEDGMENTS Hong-fei Wang thanks the support by the National Natural Science Foundation of China (No.20373076, No.20425309, and No.20533070) and the Ministry of Science and Technology of China (No.2007CB815205). Zhi-feng Cui thanks the support by the Natural Science Foundation of China (No.10674002) and the Natural Science Foundation of Anhui Province (No.ZD2007001-1).
文摘The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.
基金Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005the Key Program of National Natural Science Foundation of China under Grant No 41330318+3 种基金the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501the Engineering Research Center of Nuclear Technology Application(East China Institute of Technology)Ministry of Education under Grant NoHJSJYB2016-1
文摘For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance (Rs) on high-frequency (SMHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the CHF-CLF capacitance and the conductance method are 2 ×1012 e V-1 cm-2 and 0.94 × 1012 eV-1 cm-2, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.
基金in part supported by the Austrian Science Fund FWF through projects Com Cat(I 1041-N28)and DK+Solids4Fun(W1243)by TU Wien via the Innovative Project “SFG Spectroscopy”
文摘Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.
基金supported by the National Natural Science Foundation of China(No.21925302)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450202).
文摘Ethylene carbonate(EC)is an important electrolyte used in lithium-ion batteries due to its excellent electrochemical performance.However,propylene carbonate(PC)differs from EC by only one methyl substituent and exhibits markedly poorproperties.The EC-PC disparity is still poorly understood at the molecular level.In this study,we demonstrated that femtosecond broadband sum frequency generation vibrational spectroscopy(SFG-VS)with simultaneous measurement of multiple polarization combinations provides a powerful probe for investigating the physicochemical processes at the electrode-electrolyte interface during the charge-discharge cycles of lithium batteries.Using monolayer graphene as the working electrode,we observed the distinct reaction outcomes of EC and PC on the electrode surface.The interfacial reaction of EC occurred only in the first charge-discharge cycle,while the interfacial reaction of PC was ongoing along with the charge-discharge cycles,which explains why EC is a better electrolyte choice than PC.This study provides direct experimental evidence in elucidating the differences in interfacial performance between EC and PC,facilitating a deeper understanding of battery interface reactions and guiding the design of high-performance lithium-ion batteries.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)
文摘Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).