A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due...A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.展开更多
Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are ava...Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.展开更多
Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these ante...Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.展开更多
储能选型是储能参与新能源一次调频规划和设计的关键内容,涉及到安全性、一次调频适应性、经济性和环保性等多方面指标,是一个复杂的多目标决策问题。提出基于层次分析法(analytic hierarchy process,AHP)和逼近理想解排序方法(techniqu...储能选型是储能参与新能源一次调频规划和设计的关键内容,涉及到安全性、一次调频适应性、经济性和环保性等多方面指标,是一个复杂的多目标决策问题。提出基于层次分析法(analytic hierarchy process,AHP)和逼近理想解排序方法(technique for order preference by similarity to an ideal solution,TOPSIS)相结合的储能参与新能源一次调频选型方案。分析各个指标特征,构建两层决策体系。根据专家打分和实际应用需求,采用AHP法得到各个决策指标的权重,进一步采用TOPSIS法根据各指标的权重和相关参数对储能进行选型。最后,选取压缩空气、飞轮储能、磷酸铁锂电池和超级电容器等12种储能类型为案例进行分析,结果表明,磷酸铁锂电池在参与新能源一次调频应用场景中占有优势。该选型方案可以为储能参与新能源一次调频规划和设计提供一定的理论支撑。展开更多
文摘A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.
基金the National Natural Science Foundation of China (No.69872029)
文摘Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.
文摘Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.
文摘储能选型是储能参与新能源一次调频规划和设计的关键内容,涉及到安全性、一次调频适应性、经济性和环保性等多方面指标,是一个复杂的多目标决策问题。提出基于层次分析法(analytic hierarchy process,AHP)和逼近理想解排序方法(technique for order preference by similarity to an ideal solution,TOPSIS)相结合的储能参与新能源一次调频选型方案。分析各个指标特征,构建两层决策体系。根据专家打分和实际应用需求,采用AHP法得到各个决策指标的权重,进一步采用TOPSIS法根据各指标的权重和相关参数对储能进行选型。最后,选取压缩空气、飞轮储能、磷酸铁锂电池和超级电容器等12种储能类型为案例进行分析,结果表明,磷酸铁锂电池在参与新能源一次调频应用场景中占有优势。该选型方案可以为储能参与新能源一次调频规划和设计提供一定的理论支撑。