期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
1
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
在线阅读 下载PDF
A WEIGHTED GENERAL DISCRETE FOURIER TRANSFORM FOR THE FREQUENCY-DOMAIN BLIND SOURCE SEPARATION OF CONVOLUTIVE MIXTURES 被引量:1
2
作者 Wang Chao Fang Yong Feng Jiuchao 《Journal of Electronics(China)》 2008年第6期830-833,共4页
This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform... This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures. 展开更多
关键词 blind source separation of Convolutive Mixtures (CMBSS) frequency representation of overlap and save Weighted General Discrete Fourier Transform (WGDFT)
在线阅读 下载PDF
Research on blind source separation of operation sounds of metro power transformer through an Adaptive Threshold REPET algorithm 被引量:1
3
作者 Liang Chen Liyi Xiong +2 位作者 Fang Zhao Yanfei Ju An Jin 《Railway Sciences》 2024年第5期609-621,共13页
Purpose–The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system.Through voiceprint technology,the sounds emitted by the transformer can be monitored ... Purpose–The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system.Through voiceprint technology,the sounds emitted by the transformer can be monitored in real-time,thereby achieving real-time monitoring of the transformer’s operational status.However,the environment surrounding power transformers is filled with various interfering sounds that intertwine with both the normal operational voiceprints and faulty voiceprints of the transformer,severely impacting the accuracy and reliability of voiceprint identification.Therefore,effective preprocessing steps are required to identify and separate the sound signals of transformer operation,which is a prerequisite for subsequent analysis.Design/methodology/approach–This paper proposes an Adaptive Threshold Repeating Pattern Extraction Technique(REPET)algorithm to separate and denoise the transformer operation sound signals.By analyzing the Short-Time Fourier Transform(STFT)amplitude spectrum,the algorithm identifies and utilizes the repeating periodic structures within the signal to automatically adjust the threshold,effectively distinguishing and extracting stable background signals from transient foreground events.The REPET algorithm first calculates the autocorrelation matrix of the signal to determine the repeating period,then constructs a repeating segment model.Through comparison with the amplitude spectrum of the original signal,repeating patterns are extracted and a soft time-frequency mask is generated.Findings–After adaptive thresholding processing,the target signal is separated.Experiments conducted on mixed sounds to separate background sounds from foreground sounds using this algorithm and comparing the results with those obtained using the FastICA algorithm demonstrate that the Adaptive Threshold REPET method achieves good separation effects.Originality/value–A REPET method with adaptive threshold is proposed,which adopts the dynamic threshold adjustment mechanism,adaptively calculates the threshold for blind source separation and improves the adaptability and robustness of the algorithm to the statistical characteristics of the signal.It also lays the foundation for transformer fault detection based on acoustic fingerprinting. 展开更多
关键词 TRANSFORMER Voiceprint recognition blind source separation Mel frequency cepstral coefficients(MFCC) Adaptive threshold
在线阅读 下载PDF
Blind radar signal separation algorithm based on third-order degree of cyclostationarity criteria
4
作者 FAN Xiangyu LIU Bin +2 位作者 DONG Danna CHEN You WANG Yuancheng 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1441-1453,共13页
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o... Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals. 展开更多
关键词 blind signal separation cyclostationary frequency Givens matrix degree of cyclostationarity(DCS)blind source separation algorithm
在线阅读 下载PDF
Research on Blind Source Separation for Machine Vibrations 被引量:1
5
作者 Weiguo HUANG Shuyou WU +1 位作者 Fangrang KONG Qiang WU 《Wireless Sensor Network》 2009年第5期453-457,共5页
Blind source separation is a signal processing method based on independent component analysis, its aim is to separate the source signals from a set of observations (output of sensors) by assuming the source signals in... Blind source separation is a signal processing method based on independent component analysis, its aim is to separate the source signals from a set of observations (output of sensors) by assuming the source signals independently. This paper reviews the general concept of BSS firstly;especially the theory for convolutive mixtures, the model of convolutive mixture and two deconvolution structures, then adopts a BSS algorithm for convolutive mixtures based on residual cross-talking error threshold control criteria, the simulation testing points out good performance for simulated mixtures. 展开更多
关键词 blind source separation INDEPENDENT Component Analysis Convolutive MIXTURES MACHINE Vibration RESIDUAL Cross-Talking Error
在线阅读 下载PDF
Maximum Likelihood Blind Separation of Convolutively Mixed Discrete Sources
6
作者 辜方林 张杭 朱德生 《China Communications》 SCIE CSCD 2013年第6期60-67,共8页
In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation proce... In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation procedure of the EM algorithm with a less computational load,the algorithm named Iterative Maximum Likelihood algorithm(IML) is proposed to calculate the likelihood and recover the source signals.An important feature of the ML approach is that it has robust performance in noise environments by treating the covariance matrix of the additive Gaussian noise as a parameter.Another striking feature of the ML approach is that it is possible to separate more sources than sensors by exploiting the finite alphabet property of the sources.Simulation results show that the proposed ML approach works well either in determined mixtures or underdetermined mixtures.Furthermore,the performance of the proposed ML algorithm is close to the performance with perfect knowledge of the channel filters. 展开更多
关键词 blind source separation convolutive mixture EM Finite Alphabet
在线阅读 下载PDF
AN NMF ALGORITHM FOR BLIND SEPARATION OF CONVOLUTIVE MIXED SOURCE SIGNALS WITH LEAST CORRELATION CONSTRAINS
7
作者 Zhang Ye Fang Yong 《Journal of Electronics(China)》 2009年第4期557-563,共7页
Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual stati... Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm. 展开更多
关键词 Nonnegative matrix factorization Convolutive blind source separation Correlation constrain
在线阅读 下载PDF
An approach for solving the permutation problem in blind source separation based on microphone sub-arrays
8
作者 DU Jun 《通讯和计算机(中英文版)》 2009年第7期46-51,共6页
关键词 扩音器 电声技术 信号分析 运算法则
在线阅读 下载PDF
基于分频特征交互的非均匀雾图清晰化
9
作者 王科平 刘雨欣 +3 位作者 杨艺 张高鹏 王田 费树岷 《兵器装备工程学报》 北大核心 2025年第11期216-226,266,共12页
雾霾的非均匀随机分布是图像去雾面临的主要挑战性之一。在图像中,雾霾覆盖的范围通常呈现白色或灰白色,降低了该区域的图像信息熵,使得信息在频域内向低频区域聚拢。提出了一种基于分频特征交互的非均匀雾图清晰化算法,首先,对图像进... 雾霾的非均匀随机分布是图像去雾面临的主要挑战性之一。在图像中,雾霾覆盖的范围通常呈现白色或灰白色,降低了该区域的图像信息熵,使得信息在频域内向低频区域聚拢。提出了一种基于分频特征交互的非均匀雾图清晰化算法,首先,对图像进行频域转换,实现多级尺寸压缩和高低频分离。其次,在雾霾分布较高的低频分量,利用Transformer注意力关注机制和全局特征提取能力,增强随机雾霾分布和浓度变化的表征。在高频分量,构建深度差分高频特征增强模块,利用图像自身梯度信息引导,增强图像的边缘细节特征。最后,设计特征交互模块,在Transformer提取到的低频雾霾特征权重指导下,对不同位置和浓度的雾图进行自适应复原,同时实现低频特征与高频特征的层级间信息融合。在4个非均匀雾图数据集上的实验结果表明,所提算法在主观和客观评价均取得优异的效果。 展开更多
关键词 非均匀图像去雾 频域分离处理 注意力机制 深度差分卷积 特征交互模块
在线阅读 下载PDF
频域卷积盲源分离问题下的故障诊断方法探讨
10
作者 张明珠 王红尧 《机械设计》 北大核心 2025年第7期164-171,共8页
目前,多采用振动声波信号进行滚动轴承的故障诊断,但在高温、高腐蚀等外界环境影响下,当前同步提取变换(synchroextracting transform,SET)处理强干扰信号分量时,缺乏自适应性而易发生频率模糊,导致频域卷积盲源分离中排序不当和幅度不... 目前,多采用振动声波信号进行滚动轴承的故障诊断,但在高温、高腐蚀等外界环境影响下,当前同步提取变换(synchroextracting transform,SET)处理强干扰信号分量时,缺乏自适应性而易发生频率模糊,导致频域卷积盲源分离中排序不当和幅度不定问题。提出基于残差网络和声波信号递归图的滚动轴承故障诊断方法。采用改进的频域卷积盲源分离方式分离声波信号,同时优化频域卷积盲源分离中排序和幅度不定问题;通过相空间重构转化分离出的声波信号,获得二维递归图;将二维递归图作为深度残差对冲网络的输入,实现滚动轴承故障诊断。试验结果表明:所提方法在滚动轴承声波信号分类中的相关系数最大为0.998,二次残差最大仅为-40.18,ROC曲线更理想,具有实用性。 展开更多
关键词 滚动轴承 残差网络 声波信号递归图 频域卷积盲源分离 故障诊断
原文传递
基于改进ConvNeXt Block的新型双域融合图像隐写
11
作者 段新涛 徐凯欧 +4 位作者 白鹿伟 张萌 保梦茹 武银行 秦川 《郑州大学学报(理学版)》 北大核心 2026年第1期1-9,共9页
针对图像隐写中不可感知性差、安全性不足和隐写容量低的问题,提出一种基于改进ConvNeXt Block的新型双域融合图像隐写方案。首先,改进后的深度可分离卷积模块可以学习到更为细节的图像特征信息。其次,设计一种新型的空间域和频域信息... 针对图像隐写中不可感知性差、安全性不足和隐写容量低的问题,提出一种基于改进ConvNeXt Block的新型双域融合图像隐写方案。首先,改进后的深度可分离卷积模块可以学习到更为细节的图像特征信息。其次,设计一种新型的空间域和频域信息融合方式来提高图像的不可感知性和安全性。最后,采用多个损失函数对网络进行级联约束。实验结果表明,相比其他隐写方案,所提方案在峰值信噪比上平均提高3~4 dB,结构相似性和学习感知图像块相似度的平均值分别为0.99和0.001;抗隐写分析能力更接近50%,具有更高的安全性,且大容量隐藏时仍具有较好效果。 展开更多
关键词 图像隐写 深度可分离卷积 空间域 频域 安全性 大容量
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
12
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
面向通信设备信号异常识别的深度学习算法
13
作者 王锦毅 茆政吉 《计算机仿真》 2025年第1期215-218,228,共5页
通信设备信号可能受到多种干扰,例如电磁干扰、电源噪声等,会对信号进行扭曲和干扰,影响异常识别的准确性。现提出面向通信设备信号异常识别的深度学习算法。采用基于相似性矩阵的信号盲源分离方法将通信设备原始信号中的有用信号从背... 通信设备信号可能受到多种干扰,例如电磁干扰、电源噪声等,会对信号进行扭曲和干扰,影响异常识别的准确性。现提出面向通信设备信号异常识别的深度学习算法。采用基于相似性矩阵的信号盲源分离方法将通信设备原始信号中的有用信号从背景噪声中分离出来,完成信号的去噪处理;通过自适应噪声补偿聚合经验模态分解算法分解通信设备信号,结合综合评价指标选取有效IMF分量作为信号特征;将信号特征输入卷积神经网络中,通过深度学习信号特征实现通信设备信号异常识别。通过测试发现,所提算法可在噪声背景下有效分离出有用信号,识别精度高、识别效率高。 展开更多
关键词 通信设备信号 信号盲源分离 经验模态分解 卷积神经网络 深度学习
在线阅读 下载PDF
基于SBSS与CNN的750 kV变压器和尖板的放电信号声纹识别 被引量:1
14
作者 包艳艳 杨广泽 +1 位作者 陈伟 冯婷娜 《西南交通大学学报》 北大核心 2025年第3期781-792,共12页
变压器绝缘水平和健康状态对电网的安全稳定至关重要,为研究750 kV变压器内部存在放电故障时,箱体外采集的可听声信号中可能混杂有电晕声、鸟鸣等其他干扰信号的工程实际问题,提出一种基于稀疏表示理论(SBSS)与卷积神经网络(CNN)的750 k... 变压器绝缘水平和健康状态对电网的安全稳定至关重要,为研究750 kV变压器内部存在放电故障时,箱体外采集的可听声信号中可能混杂有电晕声、鸟鸣等其他干扰信号的工程实际问题,提出一种基于稀疏表示理论(SBSS)与卷积神经网络(CNN)的750 kV变压器与尖板放电混叠信号的声纹识别方法.首先,采集武胜750 kV变电站变压器正常运行声信号作为背景声,构建针-板放电模型得到放电声信号和现场常见干扰声作为前景声,通过添加不同信噪比的前景声到背景声中构造混叠声信号;然后,利用基于稀疏表示理论的盲分离算法实现目标前景声纹图谱和冗余背景声纹图谱的分离;最后,对CNN模型超参数进行优化,以提高模型对分离后的各类前景声纹谱图的分类性能.研究结果表明:通过盲源分离算法可以剔除冗余背景声干扰,使神经网络聚焦于前景声的分类识别;本文方法可实现混叠声信号中前景声纹的分离,分离后,CNN、支持向量机(SVM)和反向传播神经网络(BPNN)的识别准确率分别提高7.6%、17.2%和14.3%. 展开更多
关键词 局部放电 时频谱图 稀疏表示 盲分离 卷积神经网络 深度学习
在线阅读 下载PDF
基于向量加权平均优化的盲源分离LTE-M同频干扰检测 被引量:1
15
作者 王乃鑫 赵恒凯 +1 位作者 何庆军 郑国莘 《工业控制计算机》 2025年第2期45-47,共3页
轨道交通LTE-M(Long Term Evolution-Metro,基于轨道交通的长期演进)同频干扰检测关乎列控信号传输的可靠性,提出一种基于INFO(weIghted meaNoFvectOrs,基于向量加权平均)算法的盲源分离方法,即INFO-BSS。该方法以混合信号的最大化负熵... 轨道交通LTE-M(Long Term Evolution-Metro,基于轨道交通的长期演进)同频干扰检测关乎列控信号传输的可靠性,提出一种基于INFO(weIghted meaNoFvectOrs,基于向量加权平均)算法的盲源分离方法,即INFO-BSS。该方法以混合信号的最大化负熵为目标函数,用INFO优化算法替代牛顿迭代法,解决了牛顿迭代法初始参数易设置不当以及容易陷入局部最优的问题。仿真结果对比表明,在不同分辨率带宽、不同信干比等条件下,INFO-BSS的检测性能都要优于常规算法。 展开更多
关键词 同频干扰 LTE-M 盲源分离 向量加权平均优化算法
在线阅读 下载PDF
带参考信号的频域盲解卷积算法及其在卫星微振动同频相关源定量辨识中的应用
16
作者 李永杰 张周锁 罗欣 《机械工程学报》 北大核心 2025年第10期215-229,共15页
卫星微振动源定量辨识能够为微振动的抑制提供指导和依据,而由于振源信号中含有同频强相关性信号成分且信号传递路径复杂,给信号的分离和源贡献量的定量估计带来困难和挑战。为此,提出带参考信号的频域盲解卷积(Frequency-domain blind ... 卫星微振动源定量辨识能够为微振动的抑制提供指导和依据,而由于振源信号中含有同频强相关性信号成分且信号传递路径复杂,给信号的分离和源贡献量的定量估计带来困难和挑战。为此,提出带参考信号的频域盲解卷积(Frequency-domain blind deconvolution with reference signals,FBDR)算法。首先,提出一种基于同频去除的相关源盲分离算法,利用去除同频成分后混合信号计算分离矩阵,并将其作用于原始混合信号得到估计信号,为含同频成分相关源信号的分离提供了解决思路。在此基础上,提出复值参考FastICA算法,将参考信号的相似度信息引入到优化迭代目标函数中,从而引入先验信息提高算法的分离性能。最后,通过仿真分析和卫星舱段结构激励试验验证了FBDR算法的有效性,结果表明,提出算法振源贡献量估计误差相较于对比算法明显降低。将FBDR算法应用于卫星微振动地面试验信号中,试验结果表明,贡献量估计误差小于3%,满足工程需求,可为卫星减振降噪和振源在轨控制提供参考依据。 展开更多
关键词 频域盲解卷积 同频相关源 参考信号 定量辨识 卫星微振动
原文传递
基于盲源分离结合奇异谱分析的雷达多分量信号识别方法
17
作者 聂千祁 沙明辉 +2 位作者 朱应申 王崇宇 崔念强 《系统工程与电子技术》 北大核心 2025年第4期1168-1175,共8页
针对阵列在同波束内同时接收到多个雷达信号、造成时域混叠,难以进行信号检测与参数测量,进而导致信号调制类型识别困难的问题,提出一种基于盲源分离结合奇异谱分析的雷达多分量信号识别方法。首先,利用奇异谱分析对接收到的阵列信号进... 针对阵列在同波束内同时接收到多个雷达信号、造成时域混叠,难以进行信号检测与参数测量,进而导致信号调制类型识别困难的问题,提出一种基于盲源分离结合奇异谱分析的雷达多分量信号识别方法。首先,利用奇异谱分析对接收到的阵列信号进行降噪处理,再使用盲源分离方法对混叠的多分量信号进行分离;然后,对分离信号进行时频变换,得到信号时频图;最后,将时频图作为深度学习网络的输入,对信号进行识别。仿真结果表明,在5 dB下,所提方法对同波束内接收的多分量信号的平均识别率达到92.67%,有较好的识别效果。 展开更多
关键词 盲源分离 信号识别 时频分析 深度学习
在线阅读 下载PDF
管内外固定噪声干扰下新能源供热系统管网泄漏次声波检测
18
作者 刘世涛 《国外电子测量技术》 2025年第6期261-266,共6页
管内外固定噪声会影响泄漏次声波信号的传播特性,无法准确估计信号到达时间,导致泄漏定位精度下降。因此,提出管内外固定噪声干扰下新能源供热系统管网泄漏次声波检测方法。首先采用变分模态分解算法筛选满足要求的IMF重构信号,滤波管... 管内外固定噪声会影响泄漏次声波信号的传播特性,无法准确估计信号到达时间,导致泄漏定位精度下降。因此,提出管内外固定噪声干扰下新能源供热系统管网泄漏次声波检测方法。首先采用变分模态分解算法筛选满足要求的IMF重构信号,滤波管网泄漏次声波,提升信号质量。然后选取频域盲卷积源分离算法分离噪声,并通过最小均方算法自适应预测泄漏信号,消除管内外固定干扰噪声。最后联合广义互相关算法和二次相关时延估计算法,通过计算互相关函数准确估计信号到达时间差,并处理多径效应和残留噪声,实现了管网泄漏的精准定位。实验结果表明,所提方法可以有效提高信号质量,且在20个信号中表现出较高的检测准确率。 展开更多
关键词 固定噪声干扰 新能源供热系统 管网泄漏 次声波 频域盲卷积源分离
原文传递
基于Mel时频谱的变压器铁心松动故障声纹识别
19
作者 冶海平 彭家琦 +3 位作者 方保民 芈书亮 李云 何海宁 《信息技术》 2025年第9期37-42,共6页
振动声纹识别法是当前变压器机械故障诊断的主要方法之一,但变压器铁心振动声纹特性具有随机性,导致其识别难度较大。为此,文中提出一种基于Mel时频谱的变压器铁心松动故障声纹识别方法。首先,采用盲源分离技术对变压器铁心信号进行盲... 振动声纹识别法是当前变压器机械故障诊断的主要方法之一,但变压器铁心振动声纹特性具有随机性,导致其识别难度较大。为此,文中提出一种基于Mel时频谱的变压器铁心松动故障声纹识别方法。首先,采用盲源分离技术对变压器铁心信号进行盲源分离处理,以获取有效信号;其次,通过分帧、加窗和离散傅里叶变换等技术,将有效信号转换为声纹时频谱,利用Mel滤波器对时频谱进行滤波处理,得到信号的Mel时频谱,解决干扰问题。最后,将得到的Mel时频声纹谱作为变压器铁心的声纹特征输入卷积神经网络中进行学习和训练,使网络能够识别变压器铁心松动故障的声纹。实验结果表明,所提方法可准确地获取变压器铁心松动声纹分布特征,且识别精度高、效率高。 展开更多
关键词 卷积神经网络 盲源分离技术 声纹时频谱 Mel时频谱 故障声纹识别
在线阅读 下载PDF
UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals 被引量:12
20
作者 Weihong Fu Yongqiang Hei Xiaohui Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期911-920,共10页
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ... By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions. 展开更多
关键词 frequency hopping(FH) underdetermined blind source separation(UBSS) parameters estimation CLUSTERING
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部