In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the c...In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.展开更多
The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation f...The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
The 500 MHz 5-cell superconducting RF(SRF) cavity was designed aiming to be a candidate cavity for high current accelerators. A copper prototype cavity and a niobium cavity were fabricated at SINAP in 2012. In order t...The 500 MHz 5-cell superconducting RF(SRF) cavity was designed aiming to be a candidate cavity for high current accelerators. A copper prototype cavity and a niobium cavity were fabricated at SINAP in 2012. In order to ensure these cavities get the desired frequency and a good field flatness higher than 98%, frequency control was implemented in the manufacturing process and pre-tuning has been done using a simple pre-tuning frame based on the bead-pull pre-tuning method. Then, TM010-π mode frequency within 5 kHz from the target frequency was achieved and the field flatness reached 98.9% on the copper prototype cavity. Finally, the same procedure was applied to the niobium cavity to obtain a field flatness better than 98% which benefited the cavity performance in the vertical testing.展开更多
Photocathode RF gun is widely used for particle accelerators as an electron source.When driving an RF electron gun at the fundamental frequency and a higher harmonic frequency simultaneously with proper field ratio an...Photocathode RF gun is widely used for particle accelerators as an electron source.When driving an RF electron gun at the fundamental frequency and a higher harmonic frequency simultaneously with proper field ratio and relative phase,it generates electron beams of ultralow emittance and a linear longitudinal phase space distribution.Such a gun provides high quality electron beam with low energy spread,small traverse emittance and high brightness.In this paper,the RF design of a 1.5 cell cavity is presented.Simulation results of beam dynamics for the two-frequency gun and a standard single-frequency RF gun are also shown in this paper.In addition,bunch compression with a two-frequency gun is explored.展开更多
In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algo...In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.展开更多
This paper presents,a novel cactus shaped frequency reconfigurable antenna for sub 10 GHz wireless applications.PIN diode is utilized as an electrical switch to achieve reconfigurability,enabling operation in four dif...This paper presents,a novel cactus shaped frequency reconfigurable antenna for sub 10 GHz wireless applications.PIN diode is utilized as an electrical switch to achieve reconfigurability,enabling operation in four different frequency ranges.In the switch ON state mode,the antenna supports 2177-3431 and 6301-8467 MHz ranges.Alternatively,the antenna resonates within 2329-3431 and 4951-6718 MHz while in the OFF state mode.Radiation efficiency values,ranging from 68%to 84%,and gain values,ranging from 1.6 to 4 dB,in the operating frequency bands.the proposed antenna satisfy the practical requirements and expectations.The overall planner dimensions of the proposed antenna model is 40×21 mm^(2).Moreover,the measurement results from the prototype support the simulation results.Based on the frequency ranges supported by the antenna,it can be used for multiple wireless standards and services,including Worldwide interoperability and Microwave Access(WiMAX),Wireless Fidelity(Wi-Fi),Bluetooth,Long Term Evolution(LTE)and satellite communications.This increases its applicability for use in mobile terminals.展开更多
In this paper, an attempt has been made to produce a recipient system of wireless charge for a simple hearing aid so that electrical signal would be generated through detecting and receiving radio frequency waves (RF)...In this paper, an attempt has been made to produce a recipient system of wireless charge for a simple hearing aid so that electrical signal would be generated through detecting and receiving radio frequency waves (RF). The purpose of this design is to receive wireless charge for hearing aids and basically for any electronic device which is not required to a high energy for being setup. In this study, it has been demonstrated that as the amount of radio receiving energy increases, distance of receiver from antenna should be decreased;otherwise, either maximum amount of the receiving energy, or signal power density of the transmitter should be increased. Since it is impossible to be performed, it is decided to set up an energy receiving system constructed by rectenna and charge Circuit and to adjust their parameters to provide energy requirements for a device with low-power consumption. In this paper, different components of an energy receiving system from radio frequency band have been mentioned and a diagram block has been suggested. Subsequently, input impedance of designed antenna has been adjusted by provided relations. This impedance should be adjusted with the total impedance of regarded hearing aid Circuit by which the highest amount of received signal power is transferred to the battery of hearing aids. Received signal is converted to a dc voltage by rectifier diode. Finally, by applying a voltage regulator which has been designed using a common-collector amplifier not only the output voltage is kept constant, but the power is also strengthened. The battery of the hearing aids will be charged using the obtained power and voltage.展开更多
In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify...In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify the output voltage of the rectenna and transferred it to a dc load. As a starting point, optimization and parameter analysis offer a novel and small antenna for the 2.45 GHz ISM band that precisely matched. Moreover, the fabricated prototype has measured and simulated results have confirmed the antenna’s accuracy in the reflection coefficient. Second, a highly efficient antenna may effectively harvest the electrical energy by combining with the two-stage voltage multiplier circuit presented at the ISM band. Furthermore, the proposed rectenna has the optimum performance compared to state of art rectennas in terms of efficiency, power range, and impedance bandwidth showing pronounced achievement and increasing the DC output power significantly. The prototype is fabricated and experimentally tested to confirm the concept. Measurement results show that the proposed rectenna can be used for RF energy harvesting applications.展开更多
A microstrip loop resonator loaded with a lumped capacitor is proposed for short-range wireless power transmission applications.The overall physical dimensions of the proposed loop resonator configuration are as small...A microstrip loop resonator loaded with a lumped capacitor is proposed for short-range wireless power transmission applications.The overall physical dimensions of the proposed loop resonator configuration are as small as 3 cm by 3 cm.Power transmission efficiency of greater than 80%is achieved with a power transmission distance smaller than 5 mm via the strong coupling between two loop resonators around 1 GHz,as demonstrated by simulations and measurements.Experimental results also show that the power transmission performance is insensitive to various geometrical misalignments.The numerical and experimental results of this paper reveal a bandwidth of more than 50 MHz within which the power transmission efficiency is above 80%.As a result,the proposed microstrip loop resonator has the potential to accomplish efficient wireless power transmission and high-speed(higher than 10 Mbit/s)wireless communication simultaneously.展开更多
绝缘油是电抗器内部重要的绝缘介质,击穿电压是评估其绝缘特性的关键指标,与绝缘油的品质状态密切相关。本文共选取155组电抗器绝缘油进行实验,分别进行击穿电压的测定和多频超声信号在油样中传播衰减后信号的采集,分析多频超声声学参...绝缘油是电抗器内部重要的绝缘介质,击穿电压是评估其绝缘特性的关键指标,与绝缘油的品质状态密切相关。本文共选取155组电抗器绝缘油进行实验,分别进行击穿电压的测定和多频超声信号在油样中传播衰减后信号的采集,分析多频超声声学参数和击穿电压之间的幅频响应、相频响应之间的关系,并基于多频超声检测技术提出结合灰狼优化算法(grey wolf optimizer,GWO)优化随机森林算法(random forest algorithm,RF)的击穿电压预测方法。结果表明:GWO-RF绝缘油击穿电压预测模型的预测值与实际值的平均相对误差为4.04%,预测准确率达到95.96%,相较于优化前的RF绝缘油击穿电压预测模型准确率提升了20.25%。结合多频超声检测技术和GWO-RF建立的并联电抗器绝缘油击穿电压预测模型,对击穿电压的预测具有可行性。展开更多
The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) de...The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) device, of which the supply voltages are all 1.2 V, are compared under different back gate biases by different figures of merit, such as cut-off frequency( fT), maximum frequency of oscillation( fmax), etc. Because of the lack of a back gate conducting channel, the drain conductance(gd) of TDBC transistor shows a smaller degradation than those of the others, and the trans-conductance(gm) of TDBC is almost independent of back gate bias. The values of fT of TDBC are also kept nearly constant under different back gate biases. However, RF performances of FB and TB each show a significant degradation when the back gate bias is larger than ~ 20 V. The results indicate that TDBC structures could effectively improve the back gate bias in RF performance.展开更多
基金Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of Chinathe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ11-0150)+1 种基金the National Natural Science Foundation of China(No.51177011)the National High Technology Research and Development Program of China(863 Program)(No.2012AA050210)
文摘In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.
文摘The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
文摘The 500 MHz 5-cell superconducting RF(SRF) cavity was designed aiming to be a candidate cavity for high current accelerators. A copper prototype cavity and a niobium cavity were fabricated at SINAP in 2012. In order to ensure these cavities get the desired frequency and a good field flatness higher than 98%, frequency control was implemented in the manufacturing process and pre-tuning has been done using a simple pre-tuning frame based on the bead-pull pre-tuning method. Then, TM010-π mode frequency within 5 kHz from the target frequency was achieved and the field flatness reached 98.9% on the copper prototype cavity. Finally, the same procedure was applied to the niobium cavity to obtain a field flatness better than 98% which benefited the cavity performance in the vertical testing.
文摘Photocathode RF gun is widely used for particle accelerators as an electron source.When driving an RF electron gun at the fundamental frequency and a higher harmonic frequency simultaneously with proper field ratio and relative phase,it generates electron beams of ultralow emittance and a linear longitudinal phase space distribution.Such a gun provides high quality electron beam with low energy spread,small traverse emittance and high brightness.In this paper,the RF design of a 1.5 cell cavity is presented.Simulation results of beam dynamics for the two-frequency gun and a standard single-frequency RF gun are also shown in this paper.In addition,bunch compression with a two-frequency gun is explored.
基金supported by the Important National Science and Technology Specific Project of China(2018ZX03001020-0052016ZX03001022-006)+2 种基金the National Natural Science Foundation of China(61771308)the Shanghai Science and Technology Committee(16DZ1100402)the Special Project of Military and Civilian Integration of Shanghai Economic and Information Committee with the name"Ultra High Sensitivity UAV Communication System Based on Radar Related Technology"
文摘In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.
基金support from the Deanship of Scientific Research,Najran University.Kingdom of Saudi Arabia,for funding this work under the research groups funding program Grant code number(NU/RG/SERC/11/3).
文摘This paper presents,a novel cactus shaped frequency reconfigurable antenna for sub 10 GHz wireless applications.PIN diode is utilized as an electrical switch to achieve reconfigurability,enabling operation in four different frequency ranges.In the switch ON state mode,the antenna supports 2177-3431 and 6301-8467 MHz ranges.Alternatively,the antenna resonates within 2329-3431 and 4951-6718 MHz while in the OFF state mode.Radiation efficiency values,ranging from 68%to 84%,and gain values,ranging from 1.6 to 4 dB,in the operating frequency bands.the proposed antenna satisfy the practical requirements and expectations.The overall planner dimensions of the proposed antenna model is 40×21 mm^(2).Moreover,the measurement results from the prototype support the simulation results.Based on the frequency ranges supported by the antenna,it can be used for multiple wireless standards and services,including Worldwide interoperability and Microwave Access(WiMAX),Wireless Fidelity(Wi-Fi),Bluetooth,Long Term Evolution(LTE)and satellite communications.This increases its applicability for use in mobile terminals.
文摘In this paper, an attempt has been made to produce a recipient system of wireless charge for a simple hearing aid so that electrical signal would be generated through detecting and receiving radio frequency waves (RF). The purpose of this design is to receive wireless charge for hearing aids and basically for any electronic device which is not required to a high energy for being setup. In this study, it has been demonstrated that as the amount of radio receiving energy increases, distance of receiver from antenna should be decreased;otherwise, either maximum amount of the receiving energy, or signal power density of the transmitter should be increased. Since it is impossible to be performed, it is decided to set up an energy receiving system constructed by rectenna and charge Circuit and to adjust their parameters to provide energy requirements for a device with low-power consumption. In this paper, different components of an energy receiving system from radio frequency band have been mentioned and a diagram block has been suggested. Subsequently, input impedance of designed antenna has been adjusted by provided relations. This impedance should be adjusted with the total impedance of regarded hearing aid Circuit by which the highest amount of received signal power is transferred to the battery of hearing aids. Received signal is converted to a dc voltage by rectifier diode. Finally, by applying a voltage regulator which has been designed using a common-collector amplifier not only the output voltage is kept constant, but the power is also strengthened. The battery of the hearing aids will be charged using the obtained power and voltage.
文摘In this paper, we utilized villared rectifier technique to harvest wireless energy to overcome previously used RF-WEH rectenna. Our design focuses mainly on a multiple-stage Villard voltage multiplier model to rectify the output voltage of the rectenna and transferred it to a dc load. As a starting point, optimization and parameter analysis offer a novel and small antenna for the 2.45 GHz ISM band that precisely matched. Moreover, the fabricated prototype has measured and simulated results have confirmed the antenna’s accuracy in the reflection coefficient. Second, a highly efficient antenna may effectively harvest the electrical energy by combining with the two-stage voltage multiplier circuit presented at the ISM band. Furthermore, the proposed rectenna has the optimum performance compared to state of art rectennas in terms of efficiency, power range, and impedance bandwidth showing pronounced achievement and increasing the DC output power significantly. The prototype is fabricated and experimentally tested to confirm the concept. Measurement results show that the proposed rectenna can be used for RF energy harvesting applications.
基金the National Natural Science Foundation of China under Grant No.61871220.
文摘A microstrip loop resonator loaded with a lumped capacitor is proposed for short-range wireless power transmission applications.The overall physical dimensions of the proposed loop resonator configuration are as small as 3 cm by 3 cm.Power transmission efficiency of greater than 80%is achieved with a power transmission distance smaller than 5 mm via the strong coupling between two loop resonators around 1 GHz,as demonstrated by simulations and measurements.Experimental results also show that the power transmission performance is insensitive to various geometrical misalignments.The numerical and experimental results of this paper reveal a bandwidth of more than 50 MHz within which the power transmission efficiency is above 80%.As a result,the proposed microstrip loop resonator has the potential to accomplish efficient wireless power transmission and high-speed(higher than 10 Mbit/s)wireless communication simultaneously.
文摘绝缘油是电抗器内部重要的绝缘介质,击穿电压是评估其绝缘特性的关键指标,与绝缘油的品质状态密切相关。本文共选取155组电抗器绝缘油进行实验,分别进行击穿电压的测定和多频超声信号在油样中传播衰减后信号的采集,分析多频超声声学参数和击穿电压之间的幅频响应、相频响应之间的关系,并基于多频超声检测技术提出结合灰狼优化算法(grey wolf optimizer,GWO)优化随机森林算法(random forest algorithm,RF)的击穿电压预测方法。结果表明:GWO-RF绝缘油击穿电压预测模型的预测值与实际值的平均相对误差为4.04%,预测准确率达到95.96%,相较于优化前的RF绝缘油击穿电压预测模型准确率提升了20.25%。结合多频超声检测技术和GWO-RF建立的并联电抗器绝缘油击穿电压预测模型,对击穿电压的预测具有可行性。
文摘The effects of back gate bias(BGEs) on radio-frequency(RF) performances in PD SOI n MOSFETs are presented in this paper. Floating body(FB) device, T-gate body-contact(TB) device, and tunnel diode body-contact(TDBC) device, of which the supply voltages are all 1.2 V, are compared under different back gate biases by different figures of merit, such as cut-off frequency( fT), maximum frequency of oscillation( fmax), etc. Because of the lack of a back gate conducting channel, the drain conductance(gd) of TDBC transistor shows a smaller degradation than those of the others, and the trans-conductance(gm) of TDBC is almost independent of back gate bias. The values of fT of TDBC are also kept nearly constant under different back gate biases. However, RF performances of FB and TB each show a significant degradation when the back gate bias is larger than ~ 20 V. The results indicate that TDBC structures could effectively improve the back gate bias in RF performance.