Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation fa...Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation factors can significantly reduce the key distribution efficiency or even lead to encoding failures.This paper discusses and analyzes the impact of turbulence and fog in mountainous environments on free-space discrete-variable quantum key distribution.Through numerical simulation,this study examines the effects of altitude and visibility on transmittance and turbulence intensity,finding that turbulence intensity decreases with increasing altitude while transmittance increases;improvements in visibility also lead to increased transmittance.Beam wandering due to turbulence is also dominant.Combining these factors,the effects on the total transmittance and the secret key rate are taken into consideration.Our work could provide a reference for the deployment of practical QKD systems in actual mountainous environments.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
This paper studies in detail the interaction of two edge dislocations nested in a Gaussian beam propagating in free space. It shows that in free-space propagation the edge dislocations are unstable and vanish, and two...This paper studies in detail the interaction of two edge dislocations nested in a Gaussian beam propagating in free space. It shows that in free-space propagation the edge dislocations are unstable and vanish, and two noncanonical vortices with opposite topological charge take place when off-axis distances cl and c2 of two edge dislocations are nonzero, and the condition k2w08+ 32c1c2(w02- 2C1C2)Z2 〉 0 is fulfilled (k-wave number, w0-waist width). A noncanonical vortex appears when one off-axis distance is zero. However, one edge dislocation is stable when two edge dislocations are perpendicular and one off-axis distance is zero. Two perpendicular edge dislocations both with zero off-axis distance are also stable. The analytical results are illustrated by numerical examples.展开更多
In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every pola...In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.展开更多
The possibility of visible red light laser being used as signal light source for Free-Space Optical (FSO) communication is proposed. Based on analysis of transmission in atmospheric channel concerning 650 nm laser bea...The possibility of visible red light laser being used as signal light source for Free-Space Optical (FSO) communication is proposed. Based on analysis of transmission in atmospheric channel concerning 650 nm laser beam, performance of wireless laser communication link utilizing a low power red laser diode was evaluated. The proposed system can achieve a maximum range of 300 m at data rate 100 Mb/s theoretically. An experimental short-range link at data rate 10 Mb/s covering 300 m has been implemented in our university. It is feasible to enhance the system performance such as link range and data rate by increasing transmitting power and decreasing laser beam divergence angle or through other approaches.展开更多
In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization n...In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization non-sensitive of the free-space channel,but also reduce the noise introduced by phase interference.However,arbitrary continuous modulation can not be carried out in the past polarization coding,resulting in that the signal state can not obtain arbitrary continuous value in Poincare space,and the security analysis of CV-QKD using polarized coherent-states in free space is not complete.Here we propose a new modulation method to extend the modulation range of signal states with an optical-fiber-based polarization controller.In particular,in terms of the main influence factors in the free-space channel,we utilize the beam extinction and elliptical model when considering the transmittance and adopt the formulation of secret key rate.In addition,the performance of the proposed scheme under foggy weather is also taken into consideration to reveal the influence of severe weather.Numerical simulation shows that the proposed scheme is seriously affected by attenuation under foggy weather.The protocol fails when visibility is less than 1 km.At the same time,the wavelength can affect the performance of the proposed scheme.Specifically,under foggy weather,the longer the wavelength,the smaller the attenuation coefficient,and the better the transmission performance.Our proposed scheme can expand the modulation range of signal state,and supplement the security research of the scheme in the free-space channel,thus can provide theoretical support for subsequent experiments.展开更多
Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailabl...Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.展开更多
Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the conditio...Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.展开更多
The average bit error rate(ABER) performance of a decode-and-forward(DF) based relay-assisted free-space optical(FSO) communication system over gamma-gamma distribution channels considering the pointing errors is stud...The average bit error rate(ABER) performance of a decode-and-forward(DF) based relay-assisted free-space optical(FSO) communication system over gamma-gamma distribution channels considering the pointing errors is studied. With the help of Meijer's G-function, the probability density function(PDF) and cumulative distribution function(CDF) of the aggregated channel model are derived on the basis of the best path selection scheme. The analytical ABER expression is achieved and the system performance is then investigated with the influence of pointing errors, turbulence strengths and structure parameters. Monte Carlo(MC) simulation is also provided to confirm the analytical ABER expression.展开更多
In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fadin...In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.展开更多
This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel...This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel outage capacity upon the error rate, jointly quantifies the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The objective function is developed from the basic information-theoretic capacity of the optical and radio channels using the gamma-gamma model for optical fading and Ricean statistics for the radio channel fading. A simulation is performed by using the hybrid network. The objective function is shown to provide significantly improved sensitivity to degrading performance trends and supports of proactive link failure prediction and mitigation when compared to current thresholding techniques for signal quality metrics.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
In this letter, we present the generation, the balanced detection, and the transmission performance evaluation of dual polarization differential quadrature phase shift keying (DP-DQPSK) signals in optical access syste...In this letter, we present the generation, the balanced detection, and the transmission performance evaluation of dual polarization differential quadrature phase shift keying (DP-DQPSK) signals in optical access system integrated with fiber and free-space downlink. Polarization-multip- lexed (POLMUX) technique is introduced in the system for high spectral efficiency access utilization. 10 Gb/s DP-DQPSK downlink signals are successfully transmitted over 50 km SMF-28 and a 800 m wireless optical channel under the bad weather condition, such as fog and haze. The results show that the potentiality of DP-DQPSK optical access system is integrated with fiber and free- space downlink for providing flexible user access with high bandwidth efficiency.展开更多
Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM m...Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.展开更多
文摘Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation factors can significantly reduce the key distribution efficiency or even lead to encoding failures.This paper discusses and analyzes the impact of turbulence and fog in mountainous environments on free-space discrete-variable quantum key distribution.Through numerical simulation,this study examines the effects of altitude and visibility on transmittance and turbulence intensity,finding that turbulence intensity decreases with increasing altitude while transmittance increases;improvements in visibility also lead to increased transmittance.Beam wandering due to turbulence is also dominant.Combining these factors,the effects on the total transmittance and the secret key rate are taken into consideration.Our work could provide a reference for the deployment of practical QKD systems in actual mountainous environments.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金Project supported by the National Natural Science Foundation of China(Grant No.10874125)
文摘This paper studies in detail the interaction of two edge dislocations nested in a Gaussian beam propagating in free space. It shows that in free-space propagation the edge dislocations are unstable and vanish, and two noncanonical vortices with opposite topological charge take place when off-axis distances cl and c2 of two edge dislocations are nonzero, and the condition k2w08+ 32c1c2(w02- 2C1C2)Z2 〉 0 is fulfilled (k-wave number, w0-waist width). A noncanonical vortex appears when one off-axis distance is zero. However, one edge dislocation is stable when two edge dislocations are perpendicular and one off-axis distance is zero. Two perpendicular edge dislocations both with zero off-axis distance are also stable. The analytical results are illustrated by numerical examples.
基金supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China under Grant No.12511119
文摘In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.
文摘The possibility of visible red light laser being used as signal light source for Free-Space Optical (FSO) communication is proposed. Based on analysis of transmission in atmospheric channel concerning 650 nm laser beam, performance of wireless laser communication link utilizing a low power red laser diode was evaluated. The proposed system can achieve a maximum range of 300 m at data rate 100 Mb/s theoretically. An experimental short-range link at data rate 10 Mb/s covering 300 m has been implemented in our university. It is feasible to enhance the system performance such as link range and data rate by increasing transmitting power and decreasing laser beam divergence angle or through other approaches.
基金the Key Program of the National Natural Science Foundation of China(Grant No.61531003)the National Natural Science Foundation of China(Grant No.62001041)+1 种基金China Postdoctoral Science Foundation(Grant No.2020TQ0016)the Fund of State Key Laboratory of Information Photonics and Optical Communications.
文摘In free space channel,continuous-variable quantum key distribution(CV-QKD)using polarized coherent-states can not only make the signal state more stable and less susceptible to interference based on the polarization non-sensitive of the free-space channel,but also reduce the noise introduced by phase interference.However,arbitrary continuous modulation can not be carried out in the past polarization coding,resulting in that the signal state can not obtain arbitrary continuous value in Poincare space,and the security analysis of CV-QKD using polarized coherent-states in free space is not complete.Here we propose a new modulation method to extend the modulation range of signal states with an optical-fiber-based polarization controller.In particular,in terms of the main influence factors in the free-space channel,we utilize the beam extinction and elliptical model when considering the transmittance and adopt the formulation of secret key rate.In addition,the performance of the proposed scheme under foggy weather is also taken into consideration to reveal the influence of severe weather.Numerical simulation shows that the proposed scheme is seriously affected by attenuation under foggy weather.The protocol fails when visibility is less than 1 km.At the same time,the wavelength can affect the performance of the proposed scheme.Specifically,under foggy weather,the longer the wavelength,the smaller the attenuation coefficient,and the better the transmission performance.Our proposed scheme can expand the modulation range of signal state,and supplement the security research of the scheme in the free-space channel,thus can provide theoretical support for subsequent experiments.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the Leading-Edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)+6 种基金the National Natural Science Foundation of China(Grant Nos.51890861,11690033,and 62293523)the Zhangjiang Laboratory(Grant No.ZJSP21A001)the Key R&D Program of Guangdong Province(Grant No.2018B030329001)the National Postdoctoral Program for Innovative Talents(Grant No.BX2021122)the China Postdoctoral Science Foundation(Grant No.2022M711570)the Fundamental Research Funds for the Central Universities(Grant No.2022300158)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB0408300)the National Natural Science Foundation of China(Grant No.62175246)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.22ZR1471100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.YIPA2021244)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701).
文摘Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.
基金supported by the National Natural Science Foundation of China(No.61474090)the Fundamental Research Funds for the Central Universities(No.JB160105)the 111 Project of China(No.B08038)
文摘The average bit error rate(ABER) performance of a decode-and-forward(DF) based relay-assisted free-space optical(FSO) communication system over gamma-gamma distribution channels considering the pointing errors is studied. With the help of Meijer's G-function, the probability density function(PDF) and cumulative distribution function(CDF) of the aggregated channel model are derived on the basis of the best path selection scheme. The analytical ABER expression is achieved and the system performance is then investigated with the influence of pointing errors, turbulence strengths and structure parameters. Monte Carlo(MC) simulation is also provided to confirm the analytical ABER expression.
基金partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008)the National Natural Science Foundation of China (No.91438101 and No.61501206)the National Basic Research Program of China (973 Program) (No.2012CB316100)
文摘In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.
文摘This study develops an optimal performance monitoring metric for a hybrid free space optical and radio wireless network, the Outage Capacity Objective Function. The objective function—the dependence of hybrid channel outage capacity upon the error rate, jointly quantifies the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The objective function is developed from the basic information-theoretic capacity of the optical and radio channels using the gamma-gamma model for optical fading and Ricean statistics for the radio channel fading. A simulation is performed by using the hybrid network. The objective function is shown to provide significantly improved sensitivity to degrading performance trends and supports of proactive link failure prediction and mitigation when compared to current thresholding techniques for signal quality metrics.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘In this letter, we present the generation, the balanced detection, and the transmission performance evaluation of dual polarization differential quadrature phase shift keying (DP-DQPSK) signals in optical access system integrated with fiber and free-space downlink. Polarization-multip- lexed (POLMUX) technique is introduced in the system for high spectral efficiency access utilization. 10 Gb/s DP-DQPSK downlink signals are successfully transmitted over 50 km SMF-28 and a 800 m wireless optical channel under the bad weather condition, such as fog and haze. The results show that the potentiality of DP-DQPSK optical access system is integrated with fiber and free- space downlink for providing flexible user access with high bandwidth efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.62305388)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230007).
文摘Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.