As financial criminal methods become increasingly sophisticated, traditional anti-money laundering and fraud detection approaches face significant challenges. This study focuses on the application technologies and cha...As financial criminal methods become increasingly sophisticated, traditional anti-money laundering and fraud detection approaches face significant challenges. This study focuses on the application technologies and challenges of big data analytics in anti-money laundering and financial fraud detection. The research begins by outlining the evolutionary trends of financial crimes and highlighting the new characteristics of the big data era. Subsequently, it systematically analyzes the application of big data analytics technologies in this field, including machine learning, network analysis, and real-time stream processing. Through case studies, the research demonstrates how these technologies enhance the accuracy and efficiency of anomalous transaction detection. However, the study also identifies challenges faced by big data analytics, such as data quality issues, algorithmic bias, and privacy protection concerns. To address these challenges, the research proposes solutions from both technological and managerial perspectives, including the application of privacy-preserving technologies like federated learning. Finally, the study discusses the development prospects of Regulatory Technology (RegTech), emphasizing the importance of synergy between technological innovation and regulatory policies. This research provides guidance for financial institutions and regulatory bodies in optimizing their anti-money laundering and fraud detection strategies.展开更多
The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the go...The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the government intervention to bring order and establish a fiscal justice. This study emphasizes the determination of the interactions linking taxpayers with tax authorities. We try to see how fiscal audit can influence taxpayers’ fraudulent behavior. First of all, we present a theoretical study of a model pre established by other authors. We have released some conditions of this model and we have introduced a new parameter reflecting the efficiency of tax control;we found that the efficiency of a fiscal control have an important effect on these interactions. Basing on the fact that the detection of fraudulent taxpayers is the most difficult step in fiscal control, We established a new approach using DATA MINING process in order to improve fiscal control efficiency. We found results that reflect fairly the conduct of taxpayers that we have tested based on actual statistics. The results are reliable.展开更多
文摘As financial criminal methods become increasingly sophisticated, traditional anti-money laundering and fraud detection approaches face significant challenges. This study focuses on the application technologies and challenges of big data analytics in anti-money laundering and financial fraud detection. The research begins by outlining the evolutionary trends of financial crimes and highlighting the new characteristics of the big data era. Subsequently, it systematically analyzes the application of big data analytics technologies in this field, including machine learning, network analysis, and real-time stream processing. Through case studies, the research demonstrates how these technologies enhance the accuracy and efficiency of anomalous transaction detection. However, the study also identifies challenges faced by big data analytics, such as data quality issues, algorithmic bias, and privacy protection concerns. To address these challenges, the research proposes solutions from both technological and managerial perspectives, including the application of privacy-preserving technologies like federated learning. Finally, the study discusses the development prospects of Regulatory Technology (RegTech), emphasizing the importance of synergy between technological innovation and regulatory policies. This research provides guidance for financial institutions and regulatory bodies in optimizing their anti-money laundering and fraud detection strategies.
文摘The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the government intervention to bring order and establish a fiscal justice. This study emphasizes the determination of the interactions linking taxpayers with tax authorities. We try to see how fiscal audit can influence taxpayers’ fraudulent behavior. First of all, we present a theoretical study of a model pre established by other authors. We have released some conditions of this model and we have introduced a new parameter reflecting the efficiency of tax control;we found that the efficiency of a fiscal control have an important effect on these interactions. Basing on the fact that the detection of fraudulent taxpayers is the most difficult step in fiscal control, We established a new approach using DATA MINING process in order to improve fiscal control efficiency. We found results that reflect fairly the conduct of taxpayers that we have tested based on actual statistics. The results are reliable.