The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
Internet users heavily rely on web search engines for their intended information.The major revenue of search engines is advertisements(or ads).However,the search advertising suffers from fraud.Fraudsters generate fake...Internet users heavily rely on web search engines for their intended information.The major revenue of search engines is advertisements(or ads).However,the search advertising suffers from fraud.Fraudsters generate fake traffic which does not reach the intended audience,and increases the cost of the advertisers.Therefore,it is critical to detect fraud in web search.Previous studies solve this problem through fraudster detection(especially bots)by leveraging fraudsters'unique behaviors.However,they may fail to detect new means of fraud,such as crowdsourcing fraud,since crowd workers behave in part like normal users.To this end,this paper proposes an approach to detecting fraud in web search from the perspective of fraudulent keywords.We begin by using a unique dataset of 150 million web search logs to examine the discriminating features of fraudulent keywords.Specifically,we model the temporal correlation of fraudulent keywords as a graph,which reveals a very well-connected community structure.Next,we design DFW(detection of fraudulent keywords)that mines the temporal correlations between candidate fraudulent keywords and a given list of seeds.In particular,DFW leverages several refinements to filter out non-fraudulent keywords that co-occur with seeds occasionally.The evaluation using the search logs shows that DFW achieves high fraud detection precision(99%)and accuracy(93%).A further analysis reveals several typical temporal evolution patterns of fraudulent keywords and the co-existence of both bots and crowd workers as fraudsters for web search fraud.展开更多
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金supported by the National Key Research and Development Program of China under Grant No.2018YFB1800205the National Natural Science Foundation of China under Grant Nos.61725206 and U20A20180CAS-Austria Project under Grant No.GJHZ202114.
文摘Internet users heavily rely on web search engines for their intended information.The major revenue of search engines is advertisements(or ads).However,the search advertising suffers from fraud.Fraudsters generate fake traffic which does not reach the intended audience,and increases the cost of the advertisers.Therefore,it is critical to detect fraud in web search.Previous studies solve this problem through fraudster detection(especially bots)by leveraging fraudsters'unique behaviors.However,they may fail to detect new means of fraud,such as crowdsourcing fraud,since crowd workers behave in part like normal users.To this end,this paper proposes an approach to detecting fraud in web search from the perspective of fraudulent keywords.We begin by using a unique dataset of 150 million web search logs to examine the discriminating features of fraudulent keywords.Specifically,we model the temporal correlation of fraudulent keywords as a graph,which reveals a very well-connected community structure.Next,we design DFW(detection of fraudulent keywords)that mines the temporal correlations between candidate fraudulent keywords and a given list of seeds.In particular,DFW leverages several refinements to filter out non-fraudulent keywords that co-occur with seeds occasionally.The evaluation using the search logs shows that DFW achieves high fraud detection precision(99%)and accuracy(93%).A further analysis reveals several typical temporal evolution patterns of fraudulent keywords and the co-existence of both bots and crowd workers as fraudsters for web search fraud.