(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ...A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.展开更多
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova...The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red...The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.展开更多
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and...The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.展开更多
Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies.As a subtype of metal-organic frameworks(MOFs),zeolitic imidazolate frameworks(ZIFs)have e...Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies.As a subtype of metal-organic frameworks(MOFs),zeolitic imidazolate frameworks(ZIFs)have exploded in popularity in the field of biomaterials as excellent protective materials with the advantages of conformational flexibility,thermal and chemical stability,and functional controllability.With these superior properties,the applications of ZIF-based materials in combination with various therapies for cancer treatment have grown rapidly in recent years,showing remarkable achievements and great potential.This review elucidates the recent advancements in the use of ZIFs as drug delivery agents for cancer therapy.The structures,synthesis methods,properties,and various modifiers of ZIFs used in oncotherapy are presented.Recent advances in the application of ZIF-based nanoparticles as single or combination tumor treatments are reviewed.Furthermore,the future prospects,potential limitations,and challenges of the application of ZIF-based nanomaterials in cancer treatment are discussed.We except to fully explore the potential of ZIF-based materials to present a clear outline for their application as an effective cancer treatment to help them achieve early clinical application.展开更多
The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the divers...The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.展开更多
Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a...Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a rising crystalline material for photocatalytic application.Yet,most MOFs still face challenges like chemical instability in solution media,no photosensitization,and ambiguous active sites.Herein,thiol-dense Hf-or Zr-based porous frameworks(Hf-,Zr-TBAPy-8SH)were prepared as platforms for facile construction of HER active sites by anchoring transition metal(TM)ions as well as forming heterojunction with nanoscale semiconductor(CdS).The highest HER rate of 8.15mmol g^(-1) h^(-1) by Co(Ⅱ)-loaded Hf-based composite highlight(1)[S^(-)-Co]motifs as competent HER site,(2)match heterojunction outweighing traditional photosensitizer-mediated HER,(3)regulating electron density of metal-oxo cluster as a way to harness HER activity.This study firstly demonstrates synergy of Hf-oxo clusters,thiol functionalities and heterojunction as an easy yet controllable strategy to form integrated photocatalyst.展开更多
Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environm...Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environmental pollution.Especially,the improper treatment and disposal of toxic sludge generated from different industrial processes or specific wastewater treatment operations exerted significant pressure and threat to hydrosphere,pedosphere,atmosphere and even biosphere.展开更多
Stimuli-responsive two-dimensional (2D) covalent organic frameworks (COFs) with precise structures and permanent porosity have been employed as platforms for sensors. The slight change of backbones inside frameworks l...Stimuli-responsive two-dimensional (2D) covalent organic frameworks (COFs) with precise structures and permanent porosity have been employed as platforms for sensors. The slight change of backbones inside frameworks leads to different electronic states by external stimuli, such as solvent, pH, and water. Herein, we introduced an alkynyl-based building block (ETBA) with high planarity to synthesize two imine-based alkynyl-COFs (ETBA-TAPE-COF and ETBA-PYTA-COF) with high yield, good crystallinity, and chemical stability. Due to the presence of acetylene bonds, ETBA-TAPE-COF does not adopt the completely overlapping AA stacking mode. Slight interlayer displacement occurs along the parallel direction relative to the acetylene linkages, which facilitates lower configurational energy. Additionally, the introduction of pyrene group contributes to high π-electron mobility of ETBA-PYTA-COF. The interactions between electron-withdrawing group (ETBA) and electron-donating group (PYTA) during the processes of protonation and intramolecular charge transfer (ICT) endow ETBA-PYTA-COF with excellent acidochromic and solvatochromic properties, respectively. Based on this, a fluorescence sensor is successfully established, which can be used for rapid response to trace amounts of water in organic solvents. In contrast, ETBA-TAPE-COF does not exhibit these photophysical properties due to its higher HOMO–LUMO gap compared to ETBA-PYTA-COF. This work proposes a new strategy for designing and preparing COFs with unique photophysical properties without introducing additional functional groups.展开更多
Porous materials are excellent adsorbents for the removal of organic dyes from sewage and play a significant role in environmental restoration.Herein,two ferrocene(Fc)-based covalent organic frameworks(Fc-COFs),namely...Porous materials are excellent adsorbents for the removal of organic dyes from sewage and play a significant role in environmental restoration.Herein,two ferrocene(Fc)-based covalent organic frameworks(Fc-COFs),namely FcTF-COF and FcBD-COF,are successfully synthesized for the first time through a solvothermal method,and the obtained Fc-COFs powders are used to adsorb Congo red(CR)from water.The results show that both FcTF-COF and FcBD-COF have superb adsorption performance towards CR with ultrahigh adsorption capability of 1672.2 mg g−1 and 1983.7 mg g−1 at pH=4.0,respectively,outperforming the majority of the reported solid porous adsorbents.The maximum adsorption of both Fc-COFs agrees with the Sips adsorption isothermal model,indicating that their adsorption was dominated by heterogeneous adsorption.The Coulombic interactions,hydrogen bonding,π-πinteractions and ion-dipolar interactions should all contribute to their ultrahigh CR adsorption capability and high-pH resistance performance regardless of the pH in the range of 4-9.In addition,after five cycles,both COFs still remain their exceptional high CR adsorption capabilities.This study offers a prospective organic porous adsorbent with promising applications for organic dye removal in sewage processing.展开更多
The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalyt...The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR.展开更多
Covalent organic frameworks(COFs),as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions.However,the solvothermal synthesis...Covalent organic frameworks(COFs),as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions.However,the solvothermal synthesis of COFs is often time-consuming and conducted at a high temperature within a sealed vessel,and also requires a large amount of poisonous solvents,which is generally not available for scaling-up production and commercial application.In recent years,great efforts have been made to explore simple,green,and efficient approaches for COFs synthesis.In this comprehensive review,we summarized the advances in emergent strategies by highlighting their distinct features.Fundamental issues and future directions are also discussed with the object of bringing implications for large-scale and sustainable fabrication of COFs.展开更多
Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined acti...Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined active sites and high loadings under precise control has become a hotly debated topic in scientific research.Metal-organic frameworks(MOFs),with their exceptional properties such as ultrahigh specific surface areas,precisely controllable structural de-signs,and highly flexible functional cus-tomization capabilities,are regarded as one of the ideal matrices for supporting and sta-bilizing SACs.This review provides an in-sightful overview of the diverse preparation strategies for MOFs-derived SACs.It comprehen-sively analyzes the unique advantages and challenges of each method in achieving efficient synthesis of SACs,emphasizing the crucial role of optimized processes in unlocking the antici-pated performance of SACs.Furthermore,this review delves into a series of advanced charac-terization techniques,including aberration-corrected scanning transmission electron mi-croscopy(AC-STEM),electron energy loss spectroscopy(EELS),X-ray absorption spec-troscopy(XAS),and infrared absorption spectroscopy(IRAS),offering valuable insights into the atomic-scale fine structures and properties of SACs,significantly advancing the under-standing of SAC mechanisms.Moreover,this review focuses on exploring the potential appli-cations of MOFs-derived SACs in electrocatalysis frontier fields.This comprehensive exami-nation lays a solid theoretical foundation and provides a directional guidance for the rational design and controllable synthesis of high-performance MOFs-derived SACs.展开更多
Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the m...Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.展开更多
Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.He...Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.Herein,we report the first indolyl-lanthanide metal-organic framework(MOF)materials and their application as baicalin sensors.The results of this study indicate that the new crystal structure has good stability and luminous performance.The detection limits of baicalin in serum and urine are 0.05 and 0.04μmol/L,respectively,suggesting high sensitivity and selectivity.Various background substances present in practical samples,such as anions,cations,and amino acids,do not interfere with the photoluminescence analytical signal of Eu^(3+).We identified that the quenching of the Eu-MOF is due to the inner filter effect,absorption energy competition,and photoinduced electron transfer among the baicalin,ligand,and MOF through powder X-ray diffraction analysis,Fourier transform infrared spectroscopy,luminescence lifetimes,ultraviolet studies,and computational analysis.Thus,we designed a convenient,sensitive,and facile detection method using the Eu-MOF and demonstrate that Eu^(3+)-based materials are promising sensors for baicalin detection in actual serum and urine.Additionally,the prepared Eu-MOF@polyvinyl alcohol composite matrix membrane test film has considerable practical application value for the portable detection of baicalin.展开更多
Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely...Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely unexplored.The organic photoelectrochemical transistor(OPECT)has been proven to be a prominent platform for diverse applications.Herein,iron-porphyrin MOFs,as bifunctional photo-gating module and horseradish peroxidase-mimicking nanozyme,is explored for novel OPECT bioanalysis.Exemplified by alpha-fetoprotein(AFP)-dependent sandwich immunorecognition and therein glucose oxidase(GOx)-generated H_(2)O_(2)to etch CdS quantum dots on the surface of iron-porphyrin MOFs,this OPECT bioanalysis achieved high-performance AFP detection with a low detection limit of 24 fg/mL.This work featured a bifunctional iron-porphyrin MOFs gated OPECT,which is envisioned to inspire more interest in developing the diverse MOFs-nanozymes toward novel optoelectronics and beyond.展开更多
Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on cau...Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on causing environmental hazards.Reducing the amount used and increasing its efficiency have become the focus of researchers.The hybridization of titanium dioxide nanoparticles(NPs)with copper metal-organic frameworks(MOFs)can significantly improve antimicrobial performance due to its photocatalytic properties.Composites(TiO_(2)-Cu-BTC)of titanium dioxide nanoparticles and copper 1,3,5-benzenetricarboxylate acid(Cu-BTC),obtained by three up-sampling methods,namely hydrothermal,mechanical stirring,and in-situ growth,were doped into epoxy resin(TiO_(2)-Cu-BTC/EP)to enhance its anticorrosion and antifouling properties.The loaded forms were determined by field emission scanning electron microscopy and confirmed using Fourier infrared spectroscopy and X-ray diffraction spectroscopy.The lethality of the composite coating against Escherichia coli(E.coli)increased by 12%after 3 h of exposure to light,and the impedance value increased by 1×1010Ω.The efficiency of the coating was greatly improved.展开更多
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金supported by the National Natural Science Foundation of China(No.U2067212)the National Science Fund for Distinguished Young Scholars(No.21925603).
文摘A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
基金supported by the National Natural Science Foundation of China(Nos.22375031,22202037,22472023)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ001,2412023QD019,2412024QD014)+1 种基金supported by grants from the seventh batch of Jilin Province Youth Science and Technology Talent Lifting Project(No.QT202305)Science and Technology Development Plan Project of Jilin Province,China(No.20240101192JC)。
文摘The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
文摘The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.
文摘The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.
基金National Natural Science Foundation of China(52073278)the“Medical Science+X”Cross-innovation Team of the Norman Bethune Health Science of Jilin University(2022JBGS10)+2 种基金the Jilin Province Science and Technology Development Program(20190201044JC20230101045JC)the Education Department of Jilin Province(JJKH20231205KJ).
文摘Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies.As a subtype of metal-organic frameworks(MOFs),zeolitic imidazolate frameworks(ZIFs)have exploded in popularity in the field of biomaterials as excellent protective materials with the advantages of conformational flexibility,thermal and chemical stability,and functional controllability.With these superior properties,the applications of ZIF-based materials in combination with various therapies for cancer treatment have grown rapidly in recent years,showing remarkable achievements and great potential.This review elucidates the recent advancements in the use of ZIFs as drug delivery agents for cancer therapy.The structures,synthesis methods,properties,and various modifiers of ZIFs used in oncotherapy are presented.Recent advances in the application of ZIF-based nanoparticles as single or combination tumor treatments are reviewed.Furthermore,the future prospects,potential limitations,and challenges of the application of ZIF-based nanomaterials in cancer treatment are discussed.We except to fully explore the potential of ZIF-based materials to present a clear outline for their application as an effective cancer treatment to help them achieve early clinical application.
文摘The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.
基金supported by the National Natural Science Foundation of China(Nos.22371054,22301045)the Foundation of Basic and Applied Basic Research of Guangdong Province(Nos.2020B1515120024,2024A1515012801)Science and Technology Planning Project of Guangdong Province(Nos.2021A0505030066,2023A0505050164).
文摘Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a rising crystalline material for photocatalytic application.Yet,most MOFs still face challenges like chemical instability in solution media,no photosensitization,and ambiguous active sites.Herein,thiol-dense Hf-or Zr-based porous frameworks(Hf-,Zr-TBAPy-8SH)were prepared as platforms for facile construction of HER active sites by anchoring transition metal(TM)ions as well as forming heterojunction with nanoscale semiconductor(CdS).The highest HER rate of 8.15mmol g^(-1) h^(-1) by Co(Ⅱ)-loaded Hf-based composite highlight(1)[S^(-)-Co]motifs as competent HER site,(2)match heterojunction outweighing traditional photosensitizer-mediated HER,(3)regulating electron density of metal-oxo cluster as a way to harness HER activity.This study firstly demonstrates synergy of Hf-oxo clusters,thiol functionalities and heterojunction as an easy yet controllable strategy to form integrated photocatalyst.
基金supported by National Natural Science Foundation of China(Nos.52370025,22176012)BUCEA Post Graduate Innovation Project(No.PG2024086)。
文摘Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environmental pollution.Especially,the improper treatment and disposal of toxic sludge generated from different industrial processes or specific wastewater treatment operations exerted significant pressure and threat to hydrosphere,pedosphere,atmosphere and even biosphere.
基金supported by the National Natural Science Foundation of China(22172055)the Science Fund for Distinguished Young Scholars of Guangdong Province(2023B1515040026)+1 种基金the Key Area Research and Development Program of Guangdong Province(2023B0101200008)the Natural Science Foundation of Guangdong Province(2022A1515011892).
文摘Stimuli-responsive two-dimensional (2D) covalent organic frameworks (COFs) with precise structures and permanent porosity have been employed as platforms for sensors. The slight change of backbones inside frameworks leads to different electronic states by external stimuli, such as solvent, pH, and water. Herein, we introduced an alkynyl-based building block (ETBA) with high planarity to synthesize two imine-based alkynyl-COFs (ETBA-TAPE-COF and ETBA-PYTA-COF) with high yield, good crystallinity, and chemical stability. Due to the presence of acetylene bonds, ETBA-TAPE-COF does not adopt the completely overlapping AA stacking mode. Slight interlayer displacement occurs along the parallel direction relative to the acetylene linkages, which facilitates lower configurational energy. Additionally, the introduction of pyrene group contributes to high π-electron mobility of ETBA-PYTA-COF. The interactions between electron-withdrawing group (ETBA) and electron-donating group (PYTA) during the processes of protonation and intramolecular charge transfer (ICT) endow ETBA-PYTA-COF with excellent acidochromic and solvatochromic properties, respectively. Based on this, a fluorescence sensor is successfully established, which can be used for rapid response to trace amounts of water in organic solvents. In contrast, ETBA-TAPE-COF does not exhibit these photophysical properties due to its higher HOMO–LUMO gap compared to ETBA-PYTA-COF. This work proposes a new strategy for designing and preparing COFs with unique photophysical properties without introducing additional functional groups.
基金supported by the National Nat-ural Science Foundation of China(22465012)the Key Research and Development Project of Hainan Province,China(ZDYF2024GXJS005)the Major Science and Technology Plan of Hainan Province,China(ZDKJ202016).
文摘Porous materials are excellent adsorbents for the removal of organic dyes from sewage and play a significant role in environmental restoration.Herein,two ferrocene(Fc)-based covalent organic frameworks(Fc-COFs),namely FcTF-COF and FcBD-COF,are successfully synthesized for the first time through a solvothermal method,and the obtained Fc-COFs powders are used to adsorb Congo red(CR)from water.The results show that both FcTF-COF and FcBD-COF have superb adsorption performance towards CR with ultrahigh adsorption capability of 1672.2 mg g−1 and 1983.7 mg g−1 at pH=4.0,respectively,outperforming the majority of the reported solid porous adsorbents.The maximum adsorption of both Fc-COFs agrees with the Sips adsorption isothermal model,indicating that their adsorption was dominated by heterogeneous adsorption.The Coulombic interactions,hydrogen bonding,π-πinteractions and ion-dipolar interactions should all contribute to their ultrahigh CR adsorption capability and high-pH resistance performance regardless of the pH in the range of 4-9.In addition,after five cycles,both COFs still remain their exceptional high CR adsorption capabilities.This study offers a prospective organic porous adsorbent with promising applications for organic dye removal in sewage processing.
基金the financial support by the National Natural Science Foundation of China(Nos.22205124,52172206)Natural Science Foundation of Shandong province(Nos.ZR2021QB070,ZR2023QB110)+2 种基金Basic Research Projects for the Pilot Project of Integrating Science and Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)(Nos.2023PY024,2023PX108)Special Fund for Taishan Scholars Projectthe Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province。
文摘The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR.
基金financially supported by the National Natural Science Foundation of China(Nos.22322801,22108010,22278124)Fundamental Research Funds for the Central Universities(No.buctrc202135)。
文摘Covalent organic frameworks(COFs),as a burgeoning class of crystalline porous materials have attracted widespread interest due to their designable structures and customized functions.However,the solvothermal synthesis of COFs is often time-consuming and conducted at a high temperature within a sealed vessel,and also requires a large amount of poisonous solvents,which is generally not available for scaling-up production and commercial application.In recent years,great efforts have been made to explore simple,green,and efficient approaches for COFs synthesis.In this comprehensive review,we summarized the advances in emergent strategies by highlighting their distinct features.Fundamental issues and future directions are also discussed with the object of bringing implications for large-scale and sustainable fabrication of COFs.
基金supported by Henan Province Key Research and Development and Promotion of Science and Technology Project(No.25A150001)the National Natural Science Foundation of China(Nos.22409171,22125303,92361302,and 92061203).
文摘Single-atom catalysts(SACs),as the rising stars in the field of catalytic science,are leading catalytic technology into an un-precedented new era.However,the synthe-sis of high-performance SACs with well-de-fined active sites and high loadings under precise control has become a hotly debated topic in scientific research.Metal-organic frameworks(MOFs),with their exceptional properties such as ultrahigh specific surface areas,precisely controllable structural de-signs,and highly flexible functional cus-tomization capabilities,are regarded as one of the ideal matrices for supporting and sta-bilizing SACs.This review provides an in-sightful overview of the diverse preparation strategies for MOFs-derived SACs.It comprehen-sively analyzes the unique advantages and challenges of each method in achieving efficient synthesis of SACs,emphasizing the crucial role of optimized processes in unlocking the antici-pated performance of SACs.Furthermore,this review delves into a series of advanced charac-terization techniques,including aberration-corrected scanning transmission electron mi-croscopy(AC-STEM),electron energy loss spectroscopy(EELS),X-ray absorption spec-troscopy(XAS),and infrared absorption spectroscopy(IRAS),offering valuable insights into the atomic-scale fine structures and properties of SACs,significantly advancing the under-standing of SAC mechanisms.Moreover,this review focuses on exploring the potential appli-cations of MOFs-derived SACs in electrocatalysis frontier fields.This comprehensive exami-nation lays a solid theoretical foundation and provides a directional guidance for the rational design and controllable synthesis of high-performance MOFs-derived SACs.
文摘Metal-Organic Frameworks(MOFs)have emerged as promising materials for gas adsorption and separation due to their exceptional surface area,tunable porosity,and versatility in functionalization.This paper explores the mechanisms of gas adsorption in MOFs,including physical adsorption,chemisorption,and synergistic effects,which contribute to their efficiency in capturing and separating gases.The applications of MOFs in key areas such as carbon dioxide capture,hydrogen storage,natural gas separation,and air purification are discussed,highlighting their potential to address pressing environmental and energy challenges.Additionally,the use of MOFs in selective gas separation,membranes,and adsorption-based technologies like Pressure Swing Adsorption(PSA)and Vacuum Swing Adsorption(VSA)is explored,emphasizing their advantages over traditional materials.Despite challenges related to scalability,stability,and cost,MOFs hold great promise for advancing gas separation technologies in the near future,offering more efficient,sustainable,and environmentally friendly solutions.
基金Project supported by Jilin Province Science and Technology Development Plan Project(20210201061GX)。
文摘Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.Herein,we report the first indolyl-lanthanide metal-organic framework(MOF)materials and their application as baicalin sensors.The results of this study indicate that the new crystal structure has good stability and luminous performance.The detection limits of baicalin in serum and urine are 0.05 and 0.04μmol/L,respectively,suggesting high sensitivity and selectivity.Various background substances present in practical samples,such as anions,cations,and amino acids,do not interfere with the photoluminescence analytical signal of Eu^(3+).We identified that the quenching of the Eu-MOF is due to the inner filter effect,absorption energy competition,and photoinduced electron transfer among the baicalin,ligand,and MOF through powder X-ray diffraction analysis,Fourier transform infrared spectroscopy,luminescence lifetimes,ultraviolet studies,and computational analysis.Thus,we designed a convenient,sensitive,and facile detection method using the Eu-MOF and demonstrate that Eu^(3+)-based materials are promising sensors for baicalin detection in actual serum and urine.Additionally,the prepared Eu-MOF@polyvinyl alcohol composite matrix membrane test film has considerable practical application value for the portable detection of baicalin.
基金financially supported by the National Natural Science Foundation of China(Nos.22034003,22374066)the Fundamental Research Funds for the Central Universities(No.2022300285)+1 种基金the Excellent Research Program of Nanjing University(No.ZYJH004)State Key Laboratory of Analytical Chemistry for Life Science(No.5431ZZXM2203).
文摘Iron-porphyrin metal-organic frameworks(MOFs)have emerged as a remarkable class of semiconductors with adjustable photoelectrical properties and peroxidase-mimicking activities,yet their full potential remains largely unexplored.The organic photoelectrochemical transistor(OPECT)has been proven to be a prominent platform for diverse applications.Herein,iron-porphyrin MOFs,as bifunctional photo-gating module and horseradish peroxidase-mimicking nanozyme,is explored for novel OPECT bioanalysis.Exemplified by alpha-fetoprotein(AFP)-dependent sandwich immunorecognition and therein glucose oxidase(GOx)-generated H_(2)O_(2)to etch CdS quantum dots on the surface of iron-porphyrin MOFs,this OPECT bioanalysis achieved high-performance AFP detection with a low detection limit of 24 fg/mL.This work featured a bifunctional iron-porphyrin MOFs gated OPECT,which is envisioned to inspire more interest in developing the diverse MOFs-nanozymes toward novel optoelectronics and beyond.
基金Project(52073311) supported by the National Natural Science Foundation of ChinaProject(2023A0505010011) supported by the Guangdong-Hong Kong-Macao Joint Innovation Field Research Foundation,ChinaProject(2021A1515012281) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on causing environmental hazards.Reducing the amount used and increasing its efficiency have become the focus of researchers.The hybridization of titanium dioxide nanoparticles(NPs)with copper metal-organic frameworks(MOFs)can significantly improve antimicrobial performance due to its photocatalytic properties.Composites(TiO_(2)-Cu-BTC)of titanium dioxide nanoparticles and copper 1,3,5-benzenetricarboxylate acid(Cu-BTC),obtained by three up-sampling methods,namely hydrothermal,mechanical stirring,and in-situ growth,were doped into epoxy resin(TiO_(2)-Cu-BTC/EP)to enhance its anticorrosion and antifouling properties.The loaded forms were determined by field emission scanning electron microscopy and confirmed using Fourier infrared spectroscopy and X-ray diffraction spectroscopy.The lethality of the composite coating against Escherichia coli(E.coli)increased by 12%after 3 h of exposure to light,and the impedance value increased by 1×1010Ω.The efficiency of the coating was greatly improved.