Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysi...Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.展开更多
The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel lo...The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.展开更多
As one of the most stable metal-organtic framework(MOF),zeolitic imidazolate framework-8(ZIF-8)has been widely studied for applications in the field of energy storage,catalysis,and environment protection.In this paper...As one of the most stable metal-organtic framework(MOF),zeolitic imidazolate framework-8(ZIF-8)has been widely studied for applications in the field of energy storage,catalysis,and environment protection.In this paper,ZIF-8 was employed to enhance the electrochemical properties and thermal stability of the electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile(PVDF-HFP/PAN)composite separator.The results indicate that the test cells assembled with the composite separators show improved rate capability,high discharge capacity,and stable cycling performances.The addition of ZIF-8 can improve the affinity of PVDF-HFP/PAN toward liquid electrolytes,and further enhance the ionic conductivity of the composite separators.In addition,the thermal stability of the PVDF-HFP/PAN separator has been improved by ZIF-8 nanoparticles.This work can provide insight into the application of MOF materials in Li-ion batteries.展开更多
Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samp...Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samples was characterized by the XRD, BET, and SEM techniques. The results demonstrate that the compressive strength of the various shaped tablets is greatly increased and capable of meeting the industrial requirements compared to the unshaped ZIF-8 and that the loss rate of speci fic surface areas was maintained at 10% after the addition of 10%(by mass) binder and 10%(by mass) solvent. The adsorption isotherms of CO2, CH4, C3H8, and C3H6 on powdery ZIF-8and the shaped tablets(T-shaped ZIF-8, C-shaped ZIF-8, and N-shaped ZIF-8) were determined through volumetric measurements under different pressures and temperatures(298.2, 323.2, and 348.2 K). The adsorption capacities of the gases on both the ZIF-8 powder and the shaped tablets follow the order C3H6 N C3H8N CO2 N CH4. Furthermore,the results show that the adsorption capacities of the gases on the shaped tablets are lower by approximately 10%–20% than those on the powdery ZIF-8. In fact, the adsorption equilibrium isotherms for CO2, CH4, C3H8, and C3H6 on both powdery and shaped ZIF-8 can be well described by the Langmuir equation.展开更多
目的探讨炎调方调过Fas/Caspase-8信号通路减轻脓毒症急性胃肠损伤小鼠炎症的机制。方法取70只BALB/c小鼠随机分为空白组、假手术组和造模小鼠组。通过盲肠结扎穿孔术(cecum ligation and puncture,CLP)构建脓毒症急性胃肠损伤小鼠模型...目的探讨炎调方调过Fas/Caspase-8信号通路减轻脓毒症急性胃肠损伤小鼠炎症的机制。方法取70只BALB/c小鼠随机分为空白组、假手术组和造模小鼠组。通过盲肠结扎穿孔术(cecum ligation and puncture,CLP)构建脓毒症急性胃肠损伤小鼠模型,将造模成功的小鼠随机分为模型组,炎调方低、中、高剂量组,ROCK抑制剂组。苏木素-伊红(HE)染色观察小鼠回肠组织病理学改变;ELISA法检测各组小鼠血清IL-17、IL-23水平;蛋白印迹法检测回肠组织Fas/Caspase-8信号通路蛋白Fas、FADD和Caspase-8的相对表达;TUNEL染色法检测回肠组织细胞凋亡情况。结果与空白组相比,模型组小鼠回肠组织肠黏膜萎缩明显、绒毛排列杂乱,可见断裂、脱落,上皮细胞细胞坏死脱落,炎症细胞浸润明显,小鼠血清中IL-17、IL-23水平升高(P<0.05),回肠组织中Fas、FADD和Caspase-8蛋白的表达升高(P<0.05),肠上皮细胞呈现明显的凋亡现象(P<0.05)。与模型组相比,炎调方组小鼠的回肠组织病理学改变均得到不同程度的改善,血清中IL-17、IL-23水平降低(P<0.05),且回肠组织中Fas、FADD和Caspase-8蛋白的表达降低(P<0.05),肠上皮细胞凋亡减少(P<0.05)。结论炎调方可以减轻肠黏膜组织损伤和肠道组织炎症反应,可能是通过调控Fas/Caspase-8信号通路抑制脓毒症急性胃肠损伤小鼠的肠上皮细胞凋亡来发挥作用的。展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51603052 and 51573216)the Fundamental Research Funds for the Central Universities(Grant Nos.18lgpy02 and 16lgjc66).
文摘Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Open Project of Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection(No.KJS1246)
文摘The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.
基金supported by National Natural Science Foundation of China(12002295)Key Scientific Research Project of Education Department of Hunan Province,Xiangtan City,China(22A0113)Major Science and Technology Projects of Xiangtan Science and Technology Bureau(GX-ZD202210011).
文摘As one of the most stable metal-organtic framework(MOF),zeolitic imidazolate framework-8(ZIF-8)has been widely studied for applications in the field of energy storage,catalysis,and environment protection.In this paper,ZIF-8 was employed to enhance the electrochemical properties and thermal stability of the electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile(PVDF-HFP/PAN)composite separator.The results indicate that the test cells assembled with the composite separators show improved rate capability,high discharge capacity,and stable cycling performances.The addition of ZIF-8 can improve the affinity of PVDF-HFP/PAN toward liquid electrolytes,and further enhance the ionic conductivity of the composite separators.In addition,the thermal stability of the PVDF-HFP/PAN separator has been improved by ZIF-8 nanoparticles.This work can provide insight into the application of MOF materials in Li-ion batteries.
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.
基金Supported by the National Natural Science Foundation of China(21176010,21476009,21406007,and U1462104)
文摘Zeolitic imidazolate framework-8(ZIF-8) was prepared through a solve-thermal reaction method and then shaped using different additives. The in fluence of the shaping conditions on the microstructure of the shaped samples was characterized by the XRD, BET, and SEM techniques. The results demonstrate that the compressive strength of the various shaped tablets is greatly increased and capable of meeting the industrial requirements compared to the unshaped ZIF-8 and that the loss rate of speci fic surface areas was maintained at 10% after the addition of 10%(by mass) binder and 10%(by mass) solvent. The adsorption isotherms of CO2, CH4, C3H8, and C3H6 on powdery ZIF-8and the shaped tablets(T-shaped ZIF-8, C-shaped ZIF-8, and N-shaped ZIF-8) were determined through volumetric measurements under different pressures and temperatures(298.2, 323.2, and 348.2 K). The adsorption capacities of the gases on both the ZIF-8 powder and the shaped tablets follow the order C3H6 N C3H8N CO2 N CH4. Furthermore,the results show that the adsorption capacities of the gases on the shaped tablets are lower by approximately 10%–20% than those on the powdery ZIF-8. In fact, the adsorption equilibrium isotherms for CO2, CH4, C3H8, and C3H6 on both powdery and shaped ZIF-8 can be well described by the Langmuir equation.
文摘目的探讨炎调方调过Fas/Caspase-8信号通路减轻脓毒症急性胃肠损伤小鼠炎症的机制。方法取70只BALB/c小鼠随机分为空白组、假手术组和造模小鼠组。通过盲肠结扎穿孔术(cecum ligation and puncture,CLP)构建脓毒症急性胃肠损伤小鼠模型,将造模成功的小鼠随机分为模型组,炎调方低、中、高剂量组,ROCK抑制剂组。苏木素-伊红(HE)染色观察小鼠回肠组织病理学改变;ELISA法检测各组小鼠血清IL-17、IL-23水平;蛋白印迹法检测回肠组织Fas/Caspase-8信号通路蛋白Fas、FADD和Caspase-8的相对表达;TUNEL染色法检测回肠组织细胞凋亡情况。结果与空白组相比,模型组小鼠回肠组织肠黏膜萎缩明显、绒毛排列杂乱,可见断裂、脱落,上皮细胞细胞坏死脱落,炎症细胞浸润明显,小鼠血清中IL-17、IL-23水平升高(P<0.05),回肠组织中Fas、FADD和Caspase-8蛋白的表达升高(P<0.05),肠上皮细胞呈现明显的凋亡现象(P<0.05)。与模型组相比,炎调方组小鼠的回肠组织病理学改变均得到不同程度的改善,血清中IL-17、IL-23水平降低(P<0.05),且回肠组织中Fas、FADD和Caspase-8蛋白的表达降低(P<0.05),肠上皮细胞凋亡减少(P<0.05)。结论炎调方可以减轻肠黏膜组织损伤和肠道组织炎症反应,可能是通过调控Fas/Caspase-8信号通路抑制脓毒症急性胃肠损伤小鼠的肠上皮细胞凋亡来发挥作用的。