Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
The standards system for cultural heritage digitalization aims to build a clear and logically rigorous framework to guide the development and revision of relevant standards.This system enhances the scientific,systemat...The standards system for cultural heritage digitalization aims to build a clear and logically rigorous framework to guide the development and revision of relevant standards.This system enhances the scientific,systematic,and practical aspects of cultural heritage digitalization.This paper comprehensively analyzes the current status and needs of cultural heritage digitalization and standardization.It further examines the methods used to construct the standards system.Through comparative analysis,it establishes a lifecycle-based framework for cultural heritage.This framework accounts for the unique characteristics of cultural heritage and systematically integrates key processes such as collection,processing,storage,transmission,and utilization of data.The standards system is divided into six sections:general,data,information,knowledge,intelligence,and application.Based on the current digitalization efforts,this paper proposes key standardization directions for each section.This framework ensures the integrity and consistency of data throughout the digitalization process.It also supports the application of intelligent technologies in cultural heritage conservation,contributing to the sustainable preservation and utilization of cultural heritage data.展开更多
Intonation refers to the use of supra-segmental features to convey pragmatic meanings at the sentence level in a linguistically structured way.The difference in intonation between the native language and a foreign lan...Intonation refers to the use of supra-segmental features to convey pragmatic meanings at the sentence level in a linguistically structured way.The difference in intonation between the native language and a foreign language may influence second language learners’acquisition of intonation.The purpose of this study is to explore the similarities and differences at the level of phonological representation between English and Chinese intonation systems.This study investigated English and Chinese intonation systems,respectively,from both form and meaning under the Auto-Segmental Metrical framework by referring to previous studies and illustrating examples.The results showed that in terms of form,there were notable differences in the structural elements and their inventories between the intonation systems of English and Chinese.In terms of meaning,assertions were represented by different structural elements in English and Chinese intonation systems;the types of structural elements in English intonation possessed the capability to convey complex and subtle meanings,contrasting with the comparatively simpler nature of Chinese intonation.The results reveal that Chinese EFL learners demonstrate considerable difficulties in the production of the structural elements of English intonation and their combinations due to L1 intonation interference.展开更多
The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engin...The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.展开更多
Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnosti...Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.展开更多
Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, d...Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, distributed, configurable, interoperable and maintainable. Moreover, the design patterns for the framework .are developed and a variety of functional components are designed by inheriting appropriate patterns. And then an application is constructed by invoking corresponding methods of related components. An MES system implementing the framework and design patterns can be facilely integrated with other manufacturing applications, such as enterprise resource planning (ERP) and floor control system (FCS) .展开更多
How to construct integrative information management system for radiation oncology is a new practice in China based on new technical framework and the profile of integrating the healthcare enterprise in radiation oncol...How to construct integrative information management system for radiation oncology is a new practice in China based on new technical framework and the profile of integrating the healthcare enterprise in radiation oncology (IHE-RO). This paper presents the research progress for constructing the system in the department of the radiation oncology at Cancer Hospital of Chinese Academy of Medical Sciences, and its system diagram based on IHE-RO technical framework, digital imaging and communication in medicine with radiotherapy (DICOM RT) data flow standard, and emphasizes the importance of DICOM RT in constructing the system and describes the generation process of DICOM RT objects. Finally, the related international standards are suggested on RT devices adopted by China State Food and Drug Administration (SFDA) when the system is constructed.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ...The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.展开更多
China is a great agricultural country with large population, limited soilresources and traditional farming mode, so the central government has been attaching greatimportance to the development of agriculture and put f...China is a great agricultural country with large population, limited soilresources and traditional farming mode, so the central government has been attaching greatimportance to the development of agriculture and put forward a new agricultural technologyrevolution ― the transformation from traditional agriculture to modern agriculture and fromextensive farming to intensive farming. Digital agriculture is the core of agriculturalinformatization. The enforcement of digital agriculture will greatly promote agricultural technologyrevolution, two agricultural transformations and its rapid development, and enhance China'scompetitive power after the entrance of WTO. To carry out digital agriculture, the frame system ofdigital agriculture is required to be studied in the first place. In accordance with the theory andtechnology of digital earth and in combination with the agricultural reality of China, this articleoutlines the frame system of digital agriculture and its main content arid technology support.展开更多
For mankind’s survival and development,water,energy,and food(WEF)are essential material guarantees.In China,however,the spatial distribution of WEF is seriously unbalanced and mismatched.Here,a collaborative governan...For mankind’s survival and development,water,energy,and food(WEF)are essential material guarantees.In China,however,the spatial distribution of WEF is seriously unbalanced and mismatched.Here,a collaborative governance mechanism that aims at nexus security needs to be urgently established.In this paper,the Yellow River Basin in China with a representative WEF system,was selected as a case.Firstly,a comprehensive framework for WEF coupling coordination was constructed,and the relationship and mechanism between them were analyzed theoretically.Then,we investigated the spatiotemporal characteristics and driving mechanisms of the coupling coordination degree(CCD)with a composite evaluation method,coupling coordination degree model,spatial statistical analysis,and multiscale geographic weighted regression.Finally,policy implications were discussed to promote the coordinated development of the WEF system.The results showed that:1)WEF subsystems showed a significant imbalance of spatial pattern and diversity in temporal changes;2)the CCD for the WEF system varied little and remained at moderate coordination.Areas with moderate coordination have increased,while areas with superior coordination and mild disorder have decreased.In addition,the spatial clustering phenomenon of the CCD was significant and showed obvious characteristics of polarization;and 3)the action of each factor is self-differentiated and regionally variable.For different factors,GDP per capita was of particular importance,which contributed most to the regional development’s coupling coordination.For different regions,GDP per capita,average yearly precipitation,population density,and urbanization rate exhibited differences in geographical gradients in an east-west direction.The conclusion can provide references for regional resource allocation and sustainable development by enhancing WEF system utilization efficiency.展开更多
Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded...Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA).展开更多
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ...A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.展开更多
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y...Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.展开更多
The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began ...The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.展开更多
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer...Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova...The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.展开更多
Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g....Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.展开更多
Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in reveali...Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in revealing the driving forces of land change and understanding the process of land change.This paper starts from three aspects:The theory,application and modeling framework of ABM.First,we summarize the theoretical basis of ABM and introduce some related concepts.Then we expound the application and development of ABM in both urban land systems and agricultural land systems,and further introduce the case study of a model on Grain for Green Program in Hengduan Mountainous region,China.On the basis of combing the ABM modeling protocol,we propose the land system ABM modeling framework and process from the perspective of agents.In terms of urban land use,ABM research initially focused on the study of urban expansion based on landscape,then expanded to issues like urban residential separation,planning and zoning,ecological functions,etc.In terms of agricultural land use,ABM application presents more diverse and individualized features.Research topics include farmers’behavior,farmers’decision-making,planting systems,agricultural policy,etc.Compared to traditional models,ABM is more complex and difficult to generalize beyond specific context since it relies on local knowledge and data.However,due to its unique bottom-up model structure,ABM has an indispensable role in exploring the driving forces of land change and also the impact of human behavior on the environment.展开更多
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by“The Palace Museum Talent Program”.The Palace Museum Talent Program is supported by The Hong Kong Jockey Club,exclusively sponsored by the Institute of Philanthropy.
文摘The standards system for cultural heritage digitalization aims to build a clear and logically rigorous framework to guide the development and revision of relevant standards.This system enhances the scientific,systematic,and practical aspects of cultural heritage digitalization.This paper comprehensively analyzes the current status and needs of cultural heritage digitalization and standardization.It further examines the methods used to construct the standards system.Through comparative analysis,it establishes a lifecycle-based framework for cultural heritage.This framework accounts for the unique characteristics of cultural heritage and systematically integrates key processes such as collection,processing,storage,transmission,and utilization of data.The standards system is divided into six sections:general,data,information,knowledge,intelligence,and application.Based on the current digitalization efforts,this paper proposes key standardization directions for each section.This framework ensures the integrity and consistency of data throughout the digitalization process.It also supports the application of intelligent technologies in cultural heritage conservation,contributing to the sustainable preservation and utilization of cultural heritage data.
文摘Intonation refers to the use of supra-segmental features to convey pragmatic meanings at the sentence level in a linguistically structured way.The difference in intonation between the native language and a foreign language may influence second language learners’acquisition of intonation.The purpose of this study is to explore the similarities and differences at the level of phonological representation between English and Chinese intonation systems.This study investigated English and Chinese intonation systems,respectively,from both form and meaning under the Auto-Segmental Metrical framework by referring to previous studies and illustrating examples.The results showed that in terms of form,there were notable differences in the structural elements and their inventories between the intonation systems of English and Chinese.In terms of meaning,assertions were represented by different structural elements in English and Chinese intonation systems;the types of structural elements in English intonation possessed the capability to convey complex and subtle meanings,contrasting with the comparatively simpler nature of Chinese intonation.The results reveal that Chinese EFL learners demonstrate considerable difficulties in the production of the structural elements of English intonation and their combinations due to L1 intonation interference.
基金supported in part by the Universityindustry Collaborative Education Program of the Ministry of Education under Grant No.202102383004。
文摘The advancement of Internet of Things(IoT)technology is driving industries toward intelligent digital transformation,highlighting the crucial role of software engineering.Despite this,the integration of software engineering into IoT engineering education remains underexplored.To address this gap,the School of Software at North University of China,in collaboration with QST Innovation Technology Group Co.,Ltd.(QST),has developed an innovative educational mechanism.This initiative focuses on the software engineering IoT track and optimizes the teaching process through the outcome-based education(OBE)concept.It incorporates military-industrial characteristics,introduces advanced information and technology curricula,and enhances laboratory infrastructure.The goal is to cultivate innovative talents with unique capabilities,thereby fostering the comprehensive development and application of IoT technology.
基金supported by the National Natural Science Foundation of China(Grant No.12175183)。
文摘Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.
基金The National Natural Science Foundation of China (59990470).
文摘Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized, distributed, configurable, interoperable and maintainable. Moreover, the design patterns for the framework .are developed and a variety of functional components are designed by inheriting appropriate patterns. And then an application is constructed by invoking corresponding methods of related components. An MES system implementing the framework and design patterns can be facilely integrated with other manufacturing applications, such as enterprise resource planning (ERP) and floor control system (FCS) .
基金Supported by the Foundation for the Cancer Hospital of Chinese Academy of Medical Sciences~~
文摘How to construct integrative information management system for radiation oncology is a new practice in China based on new technical framework and the profile of integrating the healthcare enterprise in radiation oncology (IHE-RO). This paper presents the research progress for constructing the system in the department of the radiation oncology at Cancer Hospital of Chinese Academy of Medical Sciences, and its system diagram based on IHE-RO technical framework, digital imaging and communication in medicine with radiotherapy (DICOM RT) data flow standard, and emphasizes the importance of DICOM RT in constructing the system and describes the generation process of DICOM RT objects. Finally, the related international standards are suggested on RT devices adopted by China State Food and Drug Administration (SFDA) when the system is constructed.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金supported by the Natural Science Research Project of the Anhui Educational Committee,China(No.2022AH050827)the Open Research Fund Program of Anhui Province Key Laboratory of Specialty Polymers,Anhui University of Science and Technology,China(No.AHKLSP23-12)the Joint National-Local Engineering Research Center for Safe and Precise Coal Mining Fund,China(No.EC2022020)。
文摘The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.
文摘China is a great agricultural country with large population, limited soilresources and traditional farming mode, so the central government has been attaching greatimportance to the development of agriculture and put forward a new agricultural technologyrevolution ― the transformation from traditional agriculture to modern agriculture and fromextensive farming to intensive farming. Digital agriculture is the core of agriculturalinformatization. The enforcement of digital agriculture will greatly promote agricultural technologyrevolution, two agricultural transformations and its rapid development, and enhance China'scompetitive power after the entrance of WTO. To carry out digital agriculture, the frame system ofdigital agriculture is required to be studied in the first place. In accordance with the theory andtechnology of digital earth and in combination with the agricultural reality of China, this articleoutlines the frame system of digital agriculture and its main content arid technology support.
基金Under the auspices of Graduate Innovation Program of China University of Mining and Technology (No.2022WLKXJ095)National Natural Science Foundation of China (No.71874192)Youth Project of Fundamental Research Funds for the Central Universities (No.2021QN1076)。
文摘For mankind’s survival and development,water,energy,and food(WEF)are essential material guarantees.In China,however,the spatial distribution of WEF is seriously unbalanced and mismatched.Here,a collaborative governance mechanism that aims at nexus security needs to be urgently established.In this paper,the Yellow River Basin in China with a representative WEF system,was selected as a case.Firstly,a comprehensive framework for WEF coupling coordination was constructed,and the relationship and mechanism between them were analyzed theoretically.Then,we investigated the spatiotemporal characteristics and driving mechanisms of the coupling coordination degree(CCD)with a composite evaluation method,coupling coordination degree model,spatial statistical analysis,and multiscale geographic weighted regression.Finally,policy implications were discussed to promote the coordinated development of the WEF system.The results showed that:1)WEF subsystems showed a significant imbalance of spatial pattern and diversity in temporal changes;2)the CCD for the WEF system varied little and remained at moderate coordination.Areas with moderate coordination have increased,while areas with superior coordination and mild disorder have decreased.In addition,the spatial clustering phenomenon of the CCD was significant and showed obvious characteristics of polarization;and 3)the action of each factor is self-differentiated and regionally variable.For different factors,GDP per capita was of particular importance,which contributed most to the regional development’s coupling coordination.For different regions,GDP per capita,average yearly precipitation,population density,and urbanization rate exhibited differences in geographical gradients in an east-west direction.The conclusion can provide references for regional resource allocation and sustainable development by enhancing WEF system utilization efficiency.
基金supported by the National Key Research and Development Program of China(2019YFA0905100)the National Natural Science Foundation of China(21991102,22378227).
文摘Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA).
基金supported by the National Natural Science Foundation of China(No.U2067212)the National Science Fund for Distinguished Young Scholars(No.21925603).
文摘A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.
基金support by the National Natural Science Foundation of China(52201077)the Natural Science Foundation of Shandong Province(ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology(0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology(0104060510124).
文摘Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.
文摘The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.
基金financially supported by the National Natural Science Foundation of China(62464010)Spring City Plan-Special Program for Young Talents(K202005007)+3 种基金Yunnan Talents Support Plan for Yong Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023。
文摘Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
基金supported by the National Natural Science Foundation of China(Nos.22375031,22202037,22472023)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ001,2412023QD019,2412024QD014)+1 种基金supported by grants from the seventh batch of Jilin Province Youth Science and Technology Talent Lifting Project(No.QT202305)Science and Technology Development Plan Project of Jilin Province,China(No.20240101192JC)。
文摘The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.
基金National Science Foundation (CBET 1927336)Saudi Aramco,and the Lenfest Center for Sustainable Energy at the Earth Institute at Columbia University for financially supporting this work+3 种基金performed at GeoSoilEnviroCARS (The University of Chicago,Sector 13)Advanced Photon Source (APS),Argonne National Laboratory.GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415)the Department of Energy-GeoSciences (DE-FG02-94ER14466)the Advanced Photon Source,a U.S.Department of Energy (DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.
基金National Natural Science Foundation of China,No.41571098,No.41530749National Key R&D Program of China,No.2017YFC1502903,No.2018YFC1508805。
文摘Land change science has become an interdisciplinary research direction for understanding human-natural coupling systems.As a process-oriented modelling approach,agent based model(ABM)plays an important role in revealing the driving forces of land change and understanding the process of land change.This paper starts from three aspects:The theory,application and modeling framework of ABM.First,we summarize the theoretical basis of ABM and introduce some related concepts.Then we expound the application and development of ABM in both urban land systems and agricultural land systems,and further introduce the case study of a model on Grain for Green Program in Hengduan Mountainous region,China.On the basis of combing the ABM modeling protocol,we propose the land system ABM modeling framework and process from the perspective of agents.In terms of urban land use,ABM research initially focused on the study of urban expansion based on landscape,then expanded to issues like urban residential separation,planning and zoning,ecological functions,etc.In terms of agricultural land use,ABM application presents more diverse and individualized features.Research topics include farmers’behavior,farmers’decision-making,planting systems,agricultural policy,etc.Compared to traditional models,ABM is more complex and difficult to generalize beyond specific context since it relies on local knowledge and data.However,due to its unique bottom-up model structure,ABM has an indispensable role in exploring the driving forces of land change and also the impact of human behavior on the environment.