The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network t...The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.展开更多
Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Inte...Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.展开更多
基金supported by the National High Technology Research and Development Program of China No.2014AA01A701Nature and Science Foundation of China under Grants No.61471068,61421061+2 种基金Beijing Nova Programme No.Z131101000413030International Collaboration Project No.2015DFT10160National Major Project No.2016ZX03001009-003
文摘The key technologies involved in the evolution of the Cloud-based Radio Access Network(C-RAN) are discussed in this paper. Taking the Frameless Network Architecture(FNA) as a starting point, a cell-lessbased network topology for a multi-tier Heterogeneous Network(Het Net) and ultra-dense network is proposed. The FNA network topology modeling is researched with centralized processing and distributed antenna deployments. The Antenna Element(AE) is released as a new dimensional radio resource that is included in the centralized Radio Resource Management(RRM) processes. This contributes to the on-demand user-centric serving-set associations with cell-edge effect elimination. The Control Plane(CP) and User Plane(UP) separation and adaptation are introduced for energy efficiency improvements. The centralized RRM and different optimization goals are discussed for fully exploring the merits from the centralized computing of C-RAN. Considering the complexity, near-optimal approaches for specific users' Quality-of-Service(Qo S) requirements are addressed. Finally, based on the research highlighted above, the way forward of C-RAN evolution is discussed.
基金This material is supported by the National Natural Science Foundation of China under Grant No.61001116 and 61121001,Beijing Nova Programme No.Z131101000413030,the National Major Project No.2013ZX03003002 and Program for Changjiang Scholars and Innovative Research Team in University No.IRT1049
文摘Software-Defined Network (SDN) empowers the evolution of Internet with the OpenFlow, Network Virtualization and Service Slicing strategies. With the fast increasing requirements of Mobile Internet services, the Internet and Mobile Networks go to the convergence. Mobile Networks can also get benefits from the SDN evolution to fulfill the 5th Generation (5G) capacity booming. The article implements SDN into Frameless Network Architecture (FNA) for 5G Mobile Network evolution with proposed Mobile-oriented OpenFlow Protocol (MOFP). The Control Plane/User Plane (CP/UP) separation and adaptation strategy is proposed to support the User-Centric scenario in FNA. The traditional Base Station is separated with Central Processing Entity (CPE) and Antenna Element (AE) to perform the OpenFlow and Network Virtualization. The AEs are released as new resources for serving users. The mobile-oriented Service Slicing with different Quality of Service (QoS) classification is proposed and Resource Pooling based Virtualized Radio Resource Management (VRRM) is optimized for the Service Slicing strategy with resource-limited feature in Mobile Networks. The capacity gains are provided to show the merits of SDN based FNA. And the MiniNet based Trial Network with Service Slicing is implemented with experimental results.