The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Lear...The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Learning(PBL)as a key strategy for cultivating students’core competencies.Since then,PBL has been widely implemented as a pilot initiative in primary and secondary schools,gaining increasing influence.Analyzing the intellectual foundations of PBL research in China can offer valuable insights into its theoretical and practical dimensions.This study uses CiteSpace to examine 156 PBL-related articles from the CSSCI database,revealing that the knowledge base of PBL research is primarily built on two major domains.The first is the theoretical foundation,characterized by frequently cited literature focusing on the conceptual framework,educational value,interdisciplinary approaches,core competency cultivation,and instructional objectives of PBL.The second is empirical research,where highly cited studies include case analyses across K–12 settings,general high schools,and higher education institutions.Moving forward,future research on PBL should explore its meaning and value from a dual-subject and integrated perspective,expand case studies to include vocational education,and further promote the interdisciplinary development of core competencies through PBL.展开更多
Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solvi...Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.展开更多
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework...As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.展开更多
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice...The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.展开更多
Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold...Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed.In this study,we constructed the largest c-MET dataset,which included 2,278 molecules with different struc-tures,by inhibiting the half maximal inhibitory concentration(IC_(50))of kinase activity.No significant differences in drug-like properties were observed between active molecules(1,228)and inactive mol-ecules(1,050),including chemical space coverage,physicochemical properties,and absorption,distri-bution,metabolism,excretion,and toxicity(ADMET)profiles.The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding(t-SNE)high-dimensional data.Further clustering and chemical space networks(CSNs)analyses revealed commonly used scaffolds for c-MET inhibitors,such as M5,M7,and M8.Activity cliffs and structural alerts were used to reveal“dead ends”and“safe bets”for c-MET,as well as dominant structural fragments consisting of pyr-idazinones,triazoles,and pyrazines.Finally,the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules,including at least three aromatic het-erocycles,five aromatic nitrogen atoms,and eight nitrogeneoxygen atoms.Overall,our analyses revealed potential structure-activity relationship(SAR)patterns for c-MET inhibitors,which can inform the screening of new compounds and guide future optimization efforts.展开更多
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.展开更多
Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)...Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.展开更多
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal research.Most of the existing r...Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal research.Most of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local optimization.This research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food searching.Typically,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global optimization.To address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global optimization.Also,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep Maxout.The output scores are fused using improved score level fusion to boost prediction accuracy.The proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural networks.The results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.展开更多
In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces nove...In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces novel realization of a sensor that us-es a polymer optical multi-mode fiber to sense pulse wave bio-signal from a wrist by analyzing the specklegram mea-sured at the output of the fiber.Applying machine learning techniques over the pulse wave signal allowed medical diag-nostics and recognizing different gestures with accuracy rate of 95%.展开更多
Surveillance systems can take various forms,but gait-based surveillance is emerging as a powerful approach due to its ability to identify individuals without requiring their cooperation.In the existing studies,several...Surveillance systems can take various forms,but gait-based surveillance is emerging as a powerful approach due to its ability to identify individuals without requiring their cooperation.In the existing studies,several approaches have been suggested for gait recognition;nevertheless,the performance of existing systems is often degraded in real-world conditions due to covariate factors such as occlusions,clothing changes,walking speed,and varying camera viewpoints.Furthermore,most existing research focuses on single-person gait recognition;however,counting,tracking,detecting,and recognizing individuals in dual-subject settings with occlusions remains a challenging task.Therefore,this research proposed a variant of an automated gait model for occluded dual-subject walk scenarios.More precisely,in the proposed method,we have designed a deep learning(DL)-based dual-subject gait model(DSG)involving three modules.The first module handles silhouette segmentation,localization,and counting(SLC)using Mask-RCNN with MobileNetV2.The next stage uses a Convolutional block attention module(CBAM)-based Siamese network for frame-level tracking with a modified gallery setting.Following the last,gait recognition based on regionbased deep learning is proposed for dual-subject gait recognition.The proposed method,tested on Shri Mata Vaishno Devi University(SMVDU)-Multi-Gait and Single-Gait datasets,shows strong performance with 94.00%segmentation,58.36%tracking,and 63.04%gait recognition accuracy in dual-subject walk scenarios.展开更多
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab....The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
The New English curriculum criteria suggest teaching English grammar based on the students’cognitive characteristics and emotional needs,helping them discover the rules and encouraging them to master the grammar by u...The New English curriculum criteria suggest teaching English grammar based on the students’cognitive characteristics and emotional needs,helping them discover the rules and encouraging them to master the grammar by using it.But due to the limited time in a lesson,many English teachers adopt a simple approach to teach grammar,in which students are required to memorize the rules first and then practice a lot.This approach is effec-展开更多
The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learn...The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.展开更多
This study focuses on the effectiveness of the project-based language learning(PBLL) in a college Secretarial Oral English(SOE) Module. Student reflections of the language project work have been analyzed through Activ...This study focuses on the effectiveness of the project-based language learning(PBLL) in a college Secretarial Oral English(SOE) Module. Student reflections of the language project work have been analyzed through Activity Theory. Moreover,Data has been collected and categorized based on the components of complex human activity: the subject, object, tools(signs,symbols, and language), the community in which the activity take place, division of labor, and rules. The findings theoretically support the outcome of project-based language learning which align with the object of the activity.展开更多
基金Provincial-Level Quality Engineering Project,Preschool Education Teacher Training Base of Fuyang Normal University(Project No.:2023cyts023)University-Level Research Team Project,Collaborative Innovation Center for Basic Education in Northern Anhui(Project No.:kytd202418)。
文摘The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Learning(PBL)as a key strategy for cultivating students’core competencies.Since then,PBL has been widely implemented as a pilot initiative in primary and secondary schools,gaining increasing influence.Analyzing the intellectual foundations of PBL research in China can offer valuable insights into its theoretical and practical dimensions.This study uses CiteSpace to examine 156 PBL-related articles from the CSSCI database,revealing that the knowledge base of PBL research is primarily built on two major domains.The first is the theoretical foundation,characterized by frequently cited literature focusing on the conceptual framework,educational value,interdisciplinary approaches,core competency cultivation,and instructional objectives of PBL.The second is empirical research,where highly cited studies include case analyses across K–12 settings,general high schools,and higher education institutions.Moving forward,future research on PBL should explore its meaning and value from a dual-subject and integrated perspective,expand case studies to include vocational education,and further promote the interdisciplinary development of core competencies through PBL.
基金supported by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0134)+3 种基金University Innovation Research Group of Chongqing(CXQT20017)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300632)the Chongqing Postdoctoral Special Funding Project(2022CQBSHTB2057).
文摘Aiming at the problem of mobile data traffic surge in 5G networks,this paper proposes an effective solution combining massive multiple-input multiple-output techniques with Ultra-Dense Network(UDN)and focuses on solving the resulting challenge of increased energy consumption.A base station control algorithm based on Multi-Agent Proximity Policy Optimization(MAPPO)is designed.In the constructed 5G UDN model,each base station is considered as an agent,and the MAPPO algorithm enables inter-base station collaboration and interference management to optimize the network performance.To reduce the extra power consumption due to frequent sleep mode switching of base stations,a sleep mode switching decision algorithm is proposed.The algorithm reduces unnecessary power consumption by evaluating the network state similarity and intelligently adjusting the agent’s action strategy.Simulation results show that the proposed algorithm reduces the power consumption by 24.61% compared to the no-sleep strategy and further reduces the power consumption by 5.36% compared to the traditional MAPPO algorithm under the premise of guaranteeing the quality of service of users.
基金funded by the Deanship of Scientific Research at Jouf University under Grant number DSR-2022-RG-0101。
文摘As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.
文摘The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82173699 and 32200531)Shanghai Jiao Tong University Trans-Med Awards Research,China(STAR Project No.:20230101)Shanghai Science and Technol-ogy Commission,China(Grant No.:23DZ2290600).
文摘Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed.In this study,we constructed the largest c-MET dataset,which included 2,278 molecules with different struc-tures,by inhibiting the half maximal inhibitory concentration(IC_(50))of kinase activity.No significant differences in drug-like properties were observed between active molecules(1,228)and inactive mol-ecules(1,050),including chemical space coverage,physicochemical properties,and absorption,distri-bution,metabolism,excretion,and toxicity(ADMET)profiles.The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding(t-SNE)high-dimensional data.Further clustering and chemical space networks(CSNs)analyses revealed commonly used scaffolds for c-MET inhibitors,such as M5,M7,and M8.Activity cliffs and structural alerts were used to reveal“dead ends”and“safe bets”for c-MET,as well as dominant structural fragments consisting of pyr-idazinones,triazoles,and pyrazines.Finally,the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules,including at least three aromatic het-erocycles,five aromatic nitrogen atoms,and eight nitrogeneoxygen atoms.Overall,our analyses revealed potential structure-activity relationship(SAR)patterns for c-MET inhibitors,which can inform the screening of new compounds and guide future optimization efforts.
基金supported by the National Natural Science Foundation of China (No.62202137)the China Postdoctoral Science Foundation (No.2023M730599)the Zhejiang Provincial Natural Science Foundation of China (No.LMS25F020009)。
文摘Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
文摘Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.
文摘Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal research.Most of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local optimization.This research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food searching.Typically,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global optimization.To address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global optimization.Also,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep Maxout.The output scores are fused using improved score level fusion to boost prediction accuracy.The proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural networks.The results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.
文摘In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces novel realization of a sensor that us-es a polymer optical multi-mode fiber to sense pulse wave bio-signal from a wrist by analyzing the specklegram mea-sured at the output of the fiber.Applying machine learning techniques over the pulse wave signal allowed medical diag-nostics and recognizing different gestures with accuracy rate of 95%.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2025-RS-2023-00266605)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Surveillance systems can take various forms,but gait-based surveillance is emerging as a powerful approach due to its ability to identify individuals without requiring their cooperation.In the existing studies,several approaches have been suggested for gait recognition;nevertheless,the performance of existing systems is often degraded in real-world conditions due to covariate factors such as occlusions,clothing changes,walking speed,and varying camera viewpoints.Furthermore,most existing research focuses on single-person gait recognition;however,counting,tracking,detecting,and recognizing individuals in dual-subject settings with occlusions remains a challenging task.Therefore,this research proposed a variant of an automated gait model for occluded dual-subject walk scenarios.More precisely,in the proposed method,we have designed a deep learning(DL)-based dual-subject gait model(DSG)involving three modules.The first module handles silhouette segmentation,localization,and counting(SLC)using Mask-RCNN with MobileNetV2.The next stage uses a Convolutional block attention module(CBAM)-based Siamese network for frame-level tracking with a modified gallery setting.Following the last,gait recognition based on regionbased deep learning is proposed for dual-subject gait recognition.The proposed method,tested on Shri Mata Vaishno Devi University(SMVDU)-Multi-Gait and Single-Gait datasets,shows strong performance with 94.00%segmentation,58.36%tracking,and 63.04%gait recognition accuracy in dual-subject walk scenarios.
文摘The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
文摘The New English curriculum criteria suggest teaching English grammar based on the students’cognitive characteristics and emotional needs,helping them discover the rules and encouraging them to master the grammar by using it.But due to the limited time in a lesson,many English teachers adopt a simple approach to teach grammar,in which students are required to memorize the rules first and then practice a lot.This approach is effec-
文摘The paper is a literature review, aiming to examine the effectiveness of web-based college English learning which mainly focuses on learners' autonomous learning. Previous studies indicate that the web-based learning can improve learners' autonomous learning, as well as some problems found in their findings. Therefore, this paper first gives a summary and critique of research studies on the web-based autonomous learning and some factors influencing learners' autonomous learning ability;then, areas that deserve further study are also indicated.
文摘This study focuses on the effectiveness of the project-based language learning(PBLL) in a college Secretarial Oral English(SOE) Module. Student reflections of the language project work have been analyzed through Activity Theory. Moreover,Data has been collected and categorized based on the components of complex human activity: the subject, object, tools(signs,symbols, and language), the community in which the activity take place, division of labor, and rules. The findings theoretically support the outcome of project-based language learning which align with the object of the activity.