Efficient selective adsorption and separation using porous frameworks are critical in many industrial processes,where adsorption energy and dynamic diffusion rate are predominant factors governing selectivity.They are...Efficient selective adsorption and separation using porous frameworks are critical in many industrial processes,where adsorption energy and dynamic diffusion rate are predominant factors governing selectivity.They are highly susceptible to framework charge,which plays a significant role in selective adsorption.Currently,ionic porous frameworks can be divided into two types.One of them is composed of a charged backbone and counter ions.The framework with zwitterionic channels is another type.It is composed of regular and alternating arrangements of cationic and anionic building units.Herein,we report a hydrogen-bonded ionic framework(HIF)of{(CN_(3)H_(6))_(2)[Ti(μ_(2)-O)(SO_(4))_(2)]}_nwith 1D channel exhibits unique adsorption selectivity for Ar against N_(2)and CO_(2).Density functional theory(DFT)results suggest that CO_(2)cannot be adsorbed by HIF at the experimental temperature due to a positive adsorption free energy.In addition,due to a relatively large diffusion barrier at 77 K,N_(2)molecules hardly diffuse in HIF channels,while Ar has a negligible diffusion barrier.The unique net positively-charged space in the channel is the key to the unusual phenomena,based on DFT simulations and structural analysis.The findings in this work proposes the new adsorption mechanism and provides unique perspective for special separation applications,such as isotope and noble gasses separations.展开更多
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is...High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is highly resource intensive.This paper proposes a FlowViT-Diff framework that integrates a Vision Transformer(ViT)with an enhanced denoising diffusion probabilistic model for the Super-Resolution(SR)reconstruction of HR flow fields based on low-resolution inputs.It provides a quick initial prediction of the HR flow field by optimizing the ViT architecture,and incorporates this preliminary output as guidance within an enhanced diffusion model.The latter captures the Gaussian noise distribution during forward diffusion and progressively removes it during backward diffusion to generate the flow field.Experiments on various supercritical airfoils under different flow conditions show that FlowViT-Diff can robustly reconstruct the flow field across multiple levels of downsampling.It obtains more consistent global and local features than traditional SR methods,and yields a 3.6-fold increase in its training speed via transfer learning.Its accuracy of reconstruction of the flow field is 99.7%under ultra-low downsampling.The results demonstrate that Flow Vi T-Diff not only exhibits effective flow field reconstruction capabilities,but also provides two reconstruction strategies,both of which show effective transferability.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film coo...The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.展开更多
Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer e...Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer efficiency of current catalysts,the further application of AOPs technology is limited.Here,it is proposed that the interfacial electric field can be controlled by bor(B)-doped FeNC catalysts,which shows significant advantages in the efficient generation,release and participation of reactive oxygen species(ROS)in the reaction.The super exchange interaction between Fe sites and N and B sites is realized through the directional transfer of electrons in the interfacial electric field,which ensures the high efficiency and stability of the PMS catalytic process.B doping increases the d orbitals distribution at Fermi level,which facilitates enhanced electron transition activity,thereby promoting the effective generation of (1)^O_(2).At the same time,orbital hybridization causes the center of the d band to move to a lower energy level,which not only contributes to the desorption process of (1)^O_(2),but also accelerates its release.In addition,B-doping also improved the adsorption capacity of organic pollutants and shortened the migration distance of ROS,thereby significantly improving the degradation efficiency of ECs.The B-doping strategy outlined offers a novel approach to the development of FeNC catalysts,it lays a theoretical foundation and offers technical insights for the integration of PMS/AOPs technology in the ECs management.展开更多
Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Re...Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Recent studies have demonstrated that exogenous electrical stimulation can effectively repolarize TAMs toward the M1 phenotype.However,conventional electrical stimulation methods,relying on invasive implanted electrodes,are restricted to targeting localized tumor regions and pose inherent risks to patients.Notably,biological neural networks,distributed systems of interconnected neurons,can naturally permeate tissues and orchestrate cellular activities with high spatial efficiency.Inspired by this natural system,we developed a global in situ electric field network using piezoelectric BaTiO_(3)nanoparticles.Upon ultrasound stimulation,the nanoparticles generate a wireless electric field throughout the TME.In addtion,their nanoscale size enables them to function as synthetic“neurons”,allowing for uniform penetration throughout the tumor tissue and inducing significant repolarization of TAMs via the Ca^(2+)influx-activated nuclear factor-kappa B(NF-κB)signaling pathway.The repolarized M1 TAMs restore anti-tumor immunostimulatory functions and secrete key proinflammatory cytokines(e.g.,tumor necrosis factor-alpha(TNF-α)and interleukin-1 beta(IL-1β)),which enhance immunostimulation within the TME and directly contribute to tumor cell elimination.Remarkably,this strategy achieved robust in vivo tumor growth inhibition with excellent biosafety in a 4T1 breast tumor model.Overall,this work establishes a non-invasive,wireless electric field platform capable of globally repolarizing TAMs,offering a safe and efficient strategy to advance cancer immunotherapy and accelerate the clinical translation of bioelectronic therapies.展开更多
Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to ...Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to evaluate the severity of error propagation in the following frames,the error propagation intensity and human visual quality sensitivity of different areas were taken into consideration. It was followed by the quantification of relative importance. Finally,the proper coding mode was chosen utilizing an unequal comparison procedure. The simulation results show that the proposed method can improve peak signal-to-noise ratio (PSNR) up to 0. 9 dB and 1. 6 dB comparing with the field only and the dispersed flexible macro-block ordering (FMO)only methods respectively.展开更多
Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable ...Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable conditions which imply that the wavelet systems are wavelet frames is among the core problems in time-frequency analysis. In this article, we establish some new inequalities for wavelet frames on local fields of positive characteristic by means of the Fourier transform. As an application, an improved version of the Li-Jiang inequality for wavelet frames on local fields is obtained.展开更多
This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general he...This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.展开更多
Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate s...Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate such expenses with proper means.Nevertheless,effective training of the data-driven models in deep learning severely hinges on the data in diversity and quantity.In this paper,we present a novel data augmented Generative Adversarial Network(GAN),daGAN,for rapid and accurate flow filed prediction,allowing the adaption to the task with sparse data.The presented approach consists of two modules,pre-training module and fine-tuning module.The pre-training module utilizes a conditional GAN(cGAN)to preliminarily estimate the distribution of the training data.In the fine-tuning module,we propose a novel adversarial architecture with two generators one of which fulfils a promising data augmentation operation,so that the complement data is adequately incorporated to boost the generalization of the model.We use numerical simulation data to verify the generalization of daGAN on airfoils and flow conditions with sparse training data.The results show that daGAN is a promising tool for rapid and accurate evaluation of detailed flow field without the requirement for big training data.展开更多
The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both o...The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for 1r-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of sca/ar fields is slower than for Dirac fields.展开更多
In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of po...In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of positive characteristic via Fourier transform. Our results also hold for the Cantor dyadic group and the Vilenkin groups as they are local fields of positive characteristic.展开更多
The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show th...The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.展开更多
It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences fo...It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences for different samples of the same superconductor is to endow them with different values of the Fermi energy—a single property to which may be attributed the observed variation in their critical current densities. The study reported here extends our earlier work concerned with the generalized BCS equations [Malik, G.P. (2010) Physica B, 405, 3475-3481;Malik, G.P. (2013) WJCMP, 3,103-110]. We develop here for the first time a framework of microscopic equations that incorporates all of the following parameters of a superconductor: temperature, momentum of Cooper pairs, Fermi energy, applied magnetic field and critical current density. As an application of this framework, we address the different values of critical current densities of Bi-2212 for non-zero values of temperature and applied magnetic field that have been reported in the literature.展开更多
The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to th...The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.展开更多
The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a stra...The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a straightforward mathematical method.展开更多
The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derive...The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derived without approxima- tion, we can study the multi-electron correlation dynamics accurately. Some illustrative calculations are carried out to check the accuracy of the expression of the mean field operator. The results of illustrative calculations indicate the reliability of the accurate expression of the mean field operator. This theoretical calculation method for the mean field operator may be of considerable help in future studies of the correlated dynamics of many-electron systems in strong laser fields.展开更多
基金support from the Chinese Academy of Sciences and University of Science and Technology of China,National Key Research and Development Program of China(No.2021YFA1500402)National Natural Science Foundation of China(Nos.21571167,51502282 and 22075266)Fundamental Research Funds for the Central Universities(Nos.WK2060190053 and WK2060190100)。
文摘Efficient selective adsorption and separation using porous frameworks are critical in many industrial processes,where adsorption energy and dynamic diffusion rate are predominant factors governing selectivity.They are highly susceptible to framework charge,which plays a significant role in selective adsorption.Currently,ionic porous frameworks can be divided into two types.One of them is composed of a charged backbone and counter ions.The framework with zwitterionic channels is another type.It is composed of regular and alternating arrangements of cationic and anionic building units.Herein,we report a hydrogen-bonded ionic framework(HIF)of{(CN_(3)H_(6))_(2)[Ti(μ_(2)-O)(SO_(4))_(2)]}_nwith 1D channel exhibits unique adsorption selectivity for Ar against N_(2)and CO_(2).Density functional theory(DFT)results suggest that CO_(2)cannot be adsorbed by HIF at the experimental temperature due to a positive adsorption free energy.In addition,due to a relatively large diffusion barrier at 77 K,N_(2)molecules hardly diffuse in HIF channels,while Ar has a negligible diffusion barrier.The unique net positively-charged space in the channel is the key to the unusual phenomena,based on DFT simulations and structural analysis.The findings in this work proposes the new adsorption mechanism and provides unique perspective for special separation applications,such as isotope and noble gasses separations.
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
基金supported by the National Natural Science Foundation of China(No.12472265)。
文摘High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is highly resource intensive.This paper proposes a FlowViT-Diff framework that integrates a Vision Transformer(ViT)with an enhanced denoising diffusion probabilistic model for the Super-Resolution(SR)reconstruction of HR flow fields based on low-resolution inputs.It provides a quick initial prediction of the HR flow field by optimizing the ViT architecture,and incorporates this preliminary output as guidance within an enhanced diffusion model.The latter captures the Gaussian noise distribution during forward diffusion and progressively removes it during backward diffusion to generate the flow field.Experiments on various supercritical airfoils under different flow conditions show that FlowViT-Diff can robustly reconstruct the flow field across multiple levels of downsampling.It obtains more consistent global and local features than traditional SR methods,and yields a 3.6-fold increase in its training speed via transfer learning.Its accuracy of reconstruction of the flow field is 99.7%under ultra-low downsampling.The results demonstrate that Flow Vi T-Diff not only exhibits effective flow field reconstruction capabilities,but also provides two reconstruction strategies,both of which show effective transferability.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the National Natural Science Foundation of China(No.52205468,No.52275431,No.52375186)China Postdoctoral Science Foundation(No.2025M771349)Zhejiang Province Natural Science Foundation(No.LD22E050001)。
文摘The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.
基金supported by the National Natural Science Foundation of China(No.22278156)the Guangdong Special Support Program Project(No.2021JC060580)+1 种基金the Young Elite Scientists Sponsorship Program by CAST-Doctoral Student Special Plan,the China Scholarship Council Program(No.202406150148)the Natural Science Foundation of Guangdong Province(No.2023A1515011186).
文摘Peroxymonosulfate(PMS)-based advanced oxidation processes(AOPs)are an effective way to remove emerging contaminants(ECs)from water.The catalytic process involving PMS is hindered by the suboptimal electron trans-fer efficiency of current catalysts,the further application of AOPs technology is limited.Here,it is proposed that the interfacial electric field can be controlled by bor(B)-doped FeNC catalysts,which shows significant advantages in the efficient generation,release and participation of reactive oxygen species(ROS)in the reaction.The super exchange interaction between Fe sites and N and B sites is realized through the directional transfer of electrons in the interfacial electric field,which ensures the high efficiency and stability of the PMS catalytic process.B doping increases the d orbitals distribution at Fermi level,which facilitates enhanced electron transition activity,thereby promoting the effective generation of (1)^O_(2).At the same time,orbital hybridization causes the center of the d band to move to a lower energy level,which not only contributes to the desorption process of (1)^O_(2),but also accelerates its release.In addition,B-doping also improved the adsorption capacity of organic pollutants and shortened the migration distance of ROS,thereby significantly improving the degradation efficiency of ECs.The B-doping strategy outlined offers a novel approach to the development of FeNC catalysts,it lays a theoretical foundation and offers technical insights for the integration of PMS/AOPs technology in the ECs management.
基金supported by the National Natural Science Foundation of China(Nos.52373235 and 52573322)the National Natural Science Foundation of Hubei Province of China(No.2024AFB568).
文摘Repolarizing tumor-associated macrophages(TAMs)toward the proinflammatory M1 phenotype represents a promising strategy to reverse the immunosuppressive tumor microenvironment(TME)and enhance antitumor immunotherapy.Recent studies have demonstrated that exogenous electrical stimulation can effectively repolarize TAMs toward the M1 phenotype.However,conventional electrical stimulation methods,relying on invasive implanted electrodes,are restricted to targeting localized tumor regions and pose inherent risks to patients.Notably,biological neural networks,distributed systems of interconnected neurons,can naturally permeate tissues and orchestrate cellular activities with high spatial efficiency.Inspired by this natural system,we developed a global in situ electric field network using piezoelectric BaTiO_(3)nanoparticles.Upon ultrasound stimulation,the nanoparticles generate a wireless electric field throughout the TME.In addtion,their nanoscale size enables them to function as synthetic“neurons”,allowing for uniform penetration throughout the tumor tissue and inducing significant repolarization of TAMs via the Ca^(2+)influx-activated nuclear factor-kappa B(NF-κB)signaling pathway.The repolarized M1 TAMs restore anti-tumor immunostimulatory functions and secrete key proinflammatory cytokines(e.g.,tumor necrosis factor-alpha(TNF-α)and interleukin-1 beta(IL-1β)),which enhance immunostimulation within the TME and directly contribute to tumor cell elimination.Remarkably,this strategy achieved robust in vivo tumor growth inhibition with excellent biosafety in a 4T1 breast tumor model.Overall,this work establishes a non-invasive,wireless electric field platform capable of globally repolarizing TAMs,offering a safe and efficient strategy to advance cancer immunotherapy and accelerate the clinical translation of bioelectronic therapies.
基金National Natural Science Foundation of China(No.40927001)the Project of Key Scientific and Technological Innovation Team of Zhejiang Province,China(No.2011R09021-06)the Fundamental Research Funds for the Central Universities,China
文摘Packet loss protection method based on picture level adaptive frame /field coding (PAFF)was presented. Firstly,the end-to-end rate-distortion analysis for PAFF on the current frame was performed. Secondly,in order to evaluate the severity of error propagation in the following frames,the error propagation intensity and human visual quality sensitivity of different areas were taken into consideration. It was followed by the quantification of relative importance. Finally,the proper coding mode was chosen utilizing an unequal comparison procedure. The simulation results show that the proposed method can improve peak signal-to-noise ratio (PSNR) up to 0. 9 dB and 1. 6 dB comparing with the field only and the dispersed flexible macro-block ordering (FMO)only methods respectively.
基金supported by NBHM, Department of Atomic Energy, Government of India (Grant No. 2/48(8)/2016/NBHM(R.P)/R&D II/13924)
文摘Wavelet frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of science and engineering. Finding general and verifiable conditions which imply that the wavelet systems are wavelet frames is among the core problems in time-frequency analysis. In this article, we establish some new inequalities for wavelet frames on local fields of positive characteristic by means of the Fourier transform. As an application, an improved version of the Li-Jiang inequality for wavelet frames on local fields is obtained.
文摘This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.
基金supported by the funding of the Key Laboratory of Aerodynamic Noise Control(No.ANCL20190103)the State Key Laboratory of Aerodynamics,China(No.SKLA20180102)+1 种基金the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD).
文摘Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate such expenses with proper means.Nevertheless,effective training of the data-driven models in deep learning severely hinges on the data in diversity and quantity.In this paper,we present a novel data augmented Generative Adversarial Network(GAN),daGAN,for rapid and accurate flow filed prediction,allowing the adaption to the task with sparse data.The presented approach consists of two modules,pre-training module and fine-tuning module.The pre-training module utilizes a conditional GAN(cGAN)to preliminarily estimate the distribution of the training data.In the fine-tuning module,we propose a novel adversarial architecture with two generators one of which fulfils a promising data augmentation operation,so that the complement data is adequately incorporated to boost the generalization of the model.We use numerical simulation data to verify the generalization of daGAN on airfoils and flow conditions with sparse training data.The results show that daGAN is a promising tool for rapid and accurate evaluation of detailed flow field without the requirement for big training data.
文摘The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for 1r-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of sca/ar fields is slower than for Dirac fields.
文摘In this article, we introduce a notion of nonuniform wavelet frames on local fields of positive characteristic. Furthermore, we gave a complete characterization of tight nonuniform wavelet frames on local fields of positive characteristic via Fourier transform. Our results also hold for the Cantor dyadic group and the Vilenkin groups as they are local fields of positive characteristic.
文摘The equation of motion of an object moving in a frictionless horizontal rotating frame is somewhat comparable to the one describing the motion of a point-like charged particle projected in a magnetic field. We show that the impact of angular velocity in the former is equivalent to the impact of the magnetic field in the latter. We consider scenarios conducive to comparable trajectories for these two distinct areas of physics. We extend the analysis considering two separate routes. For the rotating frame we investigate the impact of friction and for the magnetic field the effect of field in-homogeneities. We utilize Mathematica [1] throughout, most notably for solving coupled partial differential equations.
文摘It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences for different samples of the same superconductor is to endow them with different values of the Fermi energy—a single property to which may be attributed the observed variation in their critical current densities. The study reported here extends our earlier work concerned with the generalized BCS equations [Malik, G.P. (2010) Physica B, 405, 3475-3481;Malik, G.P. (2013) WJCMP, 3,103-110]. We develop here for the first time a framework of microscopic equations that incorporates all of the following parameters of a superconductor: temperature, momentum of Cooper pairs, Fermi energy, applied magnetic field and critical current density. As an application of this framework, we address the different values of critical current densities of Bi-2212 for non-zero values of temperature and applied magnetic field that have been reported in the literature.
基金National Natural Science Foundation of China under Grant Nos.10647116 and 10575140the China Postdoctoral Science Foundation under Grant No.2005037175
文摘The general relativistic frame dragging effect on the properties,such as the moments of inertia and the radiiof gyration of fast rotating neutron stars with a uniform strong magnetic field,is calculated accurate to the first orderin the uniform angular velocity.The results show that compared with the corresponding non-rotating static sphericalsymmetric neutron star with a weaker magnetic field,a fast rotating neutron star(millisecond pulsar)with a strongermagnetic field has a relative smaller moment of inertia and radius of gyration.
文摘The interesting phenomenon of frame dragging which is associated with the rotation of the source in the field of Kerr family is discussed, and the angular velocity of an uncharged test particle is obtained with a straightforward mathematical method.
基金supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant No. XJEDU2012S41)the National Natural Science Foundation of China (Grant No. 10974198)
文摘The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derived without approxima- tion, we can study the multi-electron correlation dynamics accurately. Some illustrative calculations are carried out to check the accuracy of the expression of the mean field operator. The results of illustrative calculations indicate the reliability of the accurate expression of the mean field operator. This theoretical calculation method for the mean field operator may be of considerable help in future studies of the correlated dynamics of many-electron systems in strong laser fields.