Explosion models based on Finite Element Analysis(FEA)can be used to simulate how a warhead fragments.However their execution times are extensive.Active protection systems need to make very fast predictions,before a f...Explosion models based on Finite Element Analysis(FEA)can be used to simulate how a warhead fragments.However their execution times are extensive.Active protection systems need to make very fast predictions,before a fast attacking weapon hits the target.Fast execution times are also needed in real time simulations where the impact of many different computer models is being assessed.Hence,FEA explosion models are not appropriate for these real-time systems.The research presented in this paper delivers a fast simulation model based on Mott’s equation that calculates the number and weight of fragments created by an explosion.In addition,the size and shape of fragments,unavailable in Mott’s equation,are calculated using photographic evidence and a distribution of a fragment’s length to its width.The model also identifies the origin of fragments on the warhead’s casing.The results are verified against experimental data and a fast execution time is achieved using uncomplicated simulation steps.The developed model then can be made available for real-time simulation and fast computation.展开更多
Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+und...Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.展开更多
By establishing the finite element models and corresponding calculation methods for the target board and rod-shaped fragment, the penetration effect of the high-velocity rod-shaped fragments' impact on the LY- 12cz t...By establishing the finite element models and corresponding calculation methods for the target board and rod-shaped fragment, the penetration effect of the high-velocity rod-shaped fragments' impact on the LY- 12cz thin sheet is analyzed by analog calculation. The variation rules of the residual velocity and residual mass of fragments, chock mass and crevasse shape are obtained when the fragment penetrates target board with different incidence velocities and attack angles. Corresponding fitting computation formulas are concluded from the above calculating data. The conclusions are helpful to analyzing the destructivity of fragment and protective ability of aircraft structure. In addition, they can guide the research for battle damage mode and assessment effectively.展开更多
With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentatio...With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentation of a type of D-shaped casing, which is a common asymmetric casing in the field of warhead design. Based on the radiograph technique, static explosive experiments were conducted with D-shaped casings under four different eccentric initiation ratios to explore their fragmentation. A numerical model was then established to simulate the dynamic response of D-shaped casing filled with explosive. The results of numerical simulation were found to agree well with the experimental data.According to the results of numerical simulation and experimental data, the dynamic responses of Dshaped casing were analyzed. The results of the current work pave way for the innovative design of new warhead and for further studying the dynamic response of asymmetric casing.展开更多
文摘Explosion models based on Finite Element Analysis(FEA)can be used to simulate how a warhead fragments.However their execution times are extensive.Active protection systems need to make very fast predictions,before a fast attacking weapon hits the target.Fast execution times are also needed in real time simulations where the impact of many different computer models is being assessed.Hence,FEA explosion models are not appropriate for these real-time systems.The research presented in this paper delivers a fast simulation model based on Mott’s equation that calculates the number and weight of fragments created by an explosion.In addition,the size and shape of fragments,unavailable in Mott’s equation,are calculated using photographic evidence and a distribution of a fragment’s length to its width.The model also identifies the origin of fragments on the warhead’s casing.The results are verified against experimental data and a fast execution time is achieved using uncomplicated simulation steps.The developed model then can be made available for real-time simulation and fast computation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374124)
文摘Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.
基金Sponsored by the Ministerial Level Advanced Research Foundation(2164K)
文摘By establishing the finite element models and corresponding calculation methods for the target board and rod-shaped fragment, the penetration effect of the high-velocity rod-shaped fragments' impact on the LY- 12cz thin sheet is analyzed by analog calculation. The variation rules of the residual velocity and residual mass of fragments, chock mass and crevasse shape are obtained when the fragment penetrates target board with different incidence velocities and attack angles. Corresponding fitting computation formulas are concluded from the above calculating data. The conclusions are helpful to analyzing the destructivity of fragment and protective ability of aircraft structure. In addition, they can guide the research for battle damage mode and assessment effectively.
基金supported by the National Natural Science Foundation of China [grant number 11772059]the National KeyResearch and Development Program of China [grant number 2017yfc0822300]+1 种基金the 111 Project[grant number G20012017001]the Foundation of State Key Laboratory of Explosion Science and Technology of China[grant number KFJJ13-1Z]
文摘With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentation of a type of D-shaped casing, which is a common asymmetric casing in the field of warhead design. Based on the radiograph technique, static explosive experiments were conducted with D-shaped casings under four different eccentric initiation ratios to explore their fragmentation. A numerical model was then established to simulate the dynamic response of D-shaped casing filled with explosive. The results of numerical simulation were found to agree well with the experimental data.According to the results of numerical simulation and experimental data, the dynamic responses of Dshaped casing were analyzed. The results of the current work pave way for the innovative design of new warhead and for further studying the dynamic response of asymmetric casing.