Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthe...Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.展开更多
In fractured reservoir beds, fracture characteristics affect seismic wave response. Fractured models based on the Hudson's fractured medium theory were constructed in our laboratory by a backfilling technique. For th...In fractured reservoir beds, fracture characteristics affect seismic wave response. Fractured models based on the Hudson's fractured medium theory were constructed in our laboratory by a backfilling technique. For the same fracture density, the variations of the velocity and amplitude of the primary wave and shear wave parallel and perpendicular to the fracture were observed by altering the diameter (scale) of the penny-shaped fracture disk. The model test indicated that an increase of fracture scale increased the velocity and amplitude of the primary wave by about 2%. When the shear wave propagated parallel to the fracture, the velocity of the fast shear wave hardly changed, while the velocity of slow shear wave increased by 2.6% with increasing fracture scale. The results indicated that an increase of fracture scale would reduce the degree of anisotropy of the shear wave. The amplitudes of slow shear waves propagating parallel and perpendicular to fractures decreased with increasing fracture scale.展开更多
With the continuous shortening of horizontal well clusters and the increase in the single-stage fracturing scale, the inter-well interference phenomenon has increased. Moderate inter-well interference can improve sing...With the continuous shortening of horizontal well clusters and the increase in the single-stage fracturing scale, the inter-well interference phenomenon has increased. Moderate inter-well interference can improve single-well production, but excessive inter-well interference will reduce gas well production and slow production recovery. This paper analyzes the causes of inter-well interference from well patterns and spacing, single-stage fracturing scale and engineering. Taking three infill horizontal wells in the Sulige East II area gas field as examples, the effects of inter-well interference on productivity are analyzed by field data, which has certain guiding significance for optimizing fracturing design.展开更多
Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts h...Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts have been devoted to the study of PCBN applications in manufacturing engineering. Most of the studies, however, remain qualitative due to difficulties in experimental observations and theoretical modeling and provide limited in-depth understanding of the self-sharpening behavior/mechanism. To fill this research gap, the present study investigates the self-sharpening process of PCBN abrasives in grinding and analyzes the macro-scale fracture behavior and highly localized micro-scale crack propagation in detail. The widely employed finite element(FE) method, together with the classic Voronoi diagram and cohesive element technique,is used considering the pronounced success of FE applications in polycrystalline material modeling.Grinding trials with careful observation of the PCBN abrasive morphologies are performed to validate the proposed method. The self-sharpening details, including fracture morphology, grinding force, strain energy, and damage dissipation energy, are studied. The effects of maximum grain cut depths(MGCDs) and grinding speeds on the PCBN fracture behavior are discussed, and their optimum ranges for preferable PCBN self-sharpening performance are suggested.展开更多
基金financially supported by National Natural Science Foundation of China(No.52422402)。
文摘Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation.
文摘In fractured reservoir beds, fracture characteristics affect seismic wave response. Fractured models based on the Hudson's fractured medium theory were constructed in our laboratory by a backfilling technique. For the same fracture density, the variations of the velocity and amplitude of the primary wave and shear wave parallel and perpendicular to the fracture were observed by altering the diameter (scale) of the penny-shaped fracture disk. The model test indicated that an increase of fracture scale increased the velocity and amplitude of the primary wave by about 2%. When the shear wave propagated parallel to the fracture, the velocity of the fast shear wave hardly changed, while the velocity of slow shear wave increased by 2.6% with increasing fracture scale. The results indicated that an increase of fracture scale would reduce the degree of anisotropy of the shear wave. The amplitudes of slow shear waves propagating parallel and perpendicular to fractures decreased with increasing fracture scale.
文摘With the continuous shortening of horizontal well clusters and the increase in the single-stage fracturing scale, the inter-well interference phenomenon has increased. Moderate inter-well interference can improve single-well production, but excessive inter-well interference will reduce gas well production and slow production recovery. This paper analyzes the causes of inter-well interference from well patterns and spacing, single-stage fracturing scale and engineering. Taking three infill horizontal wells in the Sulige East II area gas field as examples, the effects of inter-well interference on productivity are analyzed by field data, which has certain guiding significance for optimizing fracturing design.
基金the financial support provided by the National Natural Science Foundation of China (No. 51775275 and No. 51575270)the Fundamental Research Funds for the Central Universities of China (No. NP2018110)+1 种基金Top Six Talents Project in Jiangsu Province of China (No. JXQC-002)the Foundation of Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (KYCX18_0264)
文摘Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts have been devoted to the study of PCBN applications in manufacturing engineering. Most of the studies, however, remain qualitative due to difficulties in experimental observations and theoretical modeling and provide limited in-depth understanding of the self-sharpening behavior/mechanism. To fill this research gap, the present study investigates the self-sharpening process of PCBN abrasives in grinding and analyzes the macro-scale fracture behavior and highly localized micro-scale crack propagation in detail. The widely employed finite element(FE) method, together with the classic Voronoi diagram and cohesive element technique,is used considering the pronounced success of FE applications in polycrystalline material modeling.Grinding trials with careful observation of the PCBN abrasive morphologies are performed to validate the proposed method. The self-sharpening details, including fracture morphology, grinding force, strain energy, and damage dissipation energy, are studied. The effects of maximum grain cut depths(MGCDs) and grinding speeds on the PCBN fracture behavior are discussed, and their optimum ranges for preferable PCBN self-sharpening performance are suggested.