期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer
1
作者 Jian Yang Xinghao Gou +4 位作者 Jiayi Sun Fei Liu Xiaojin Zhou Xu Liu Tao Zhang 《Fluid Dynamics & Materials Processing》 2025年第8期1935-1954,共20页
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me... Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels. 展开更多
关键词 proppant fractures gas-water two-phase flow numerical simulation lattice Boltzmann method flow behavior
在线阅读 下载PDF
Modeling of Crack Development Associated with Proppant Hydraulic Fracturing in a Clay-Carbonate Oil Deposit
2
作者 Sergey Galkin Ian Savitckii +3 位作者 Denis Shustov Artyom Kukhtinskii Boris Osovetsky Alexander Votinov 《Fluid Dynamics & Materials Processing》 EI 2023年第2期273-284,共12页
Survey and novel research data are used in the present study to classify/identify the lithological type of Verey age reservoirs’rocks.It is shown how the use of X-ray tomography can clarify the degree of heterogeneit... Survey and novel research data are used in the present study to classify/identify the lithological type of Verey age reservoirs’rocks.It is shown how the use of X-ray tomography can clarify the degree of heterogeneity,porosity and permeability of these rocks.These data are then used to elaborate a model of hydraulic fracturing.The resulting software can take into account the properties of proppant and breakdown fluid,thermal reservoir conditions,oil properties,well design data and even the filtration and elastic-mechanical properties of the rocks.Calculations of hydraulic fracturing crack formation are carried out and the results are compared with the data on hydraulic fracturing crack at standard conditions.Significant differences in crack formation in standard and lithotype models are determined.It is shown that the average width of the crack development for the lithotype model is 2.3 times higher than that for the standard model.Moreover,the coverage of crack development in height for the lithotype model is almost 2 times less than that for the standard model.The estimated fracture half-length for the lithotype model is 13.3%less than that of for the standard model.A higher dimensionless fracture conductivity is also obtained for the lithotype model.It is concluded that the proposed approach can increase the reliability of hydraulic fracturing crack models. 展开更多
关键词 proppant hydraulic fracturing X-ray tomography porosity permeability fractured reservoir well logging carbonate deposits
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部