Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide ...Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.展开更多
Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP p...Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP process.A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given.The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1 V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.展开更多
The utilization of hydraulic fracturing for the extraction of natural gas hydrates in maritime environments has been relatively underexplored in the existing literature.This study introduces a novel approach by employ...The utilization of hydraulic fracturing for the extraction of natural gas hydrates in maritime environments has been relatively underexplored in the existing literature.This study introduces a novel approach by employing a fully implicit integration method to construct a two-dimensional temperature distribution model of the wellbore.The model considers critical parameters such as fracturing fluid time,initial temperature,and fracturing fluid displacement to forecast the temperature data of the wellbore and its surrounding environments throughout the entire fracturing process.The investigation reveals that the initial temperature of the fracturing liquid and the duration of the fracturing process exert a substantial influence on the wellbore temperature,whereas the impact of fracturing fluid displacement is found to be minimal.Furthermore,a comparative analysis between the results derived from the proposed model and those obtained from traditional steady-state formulas substantiates the accuracy and efficacy of the developed model.This study significantly advances our comprehension of temperature dynamics within wellbores during hydraulic fracturing operations in maritime environments,thereby offering valuable insights for future endeavors in natural gas hydrate extraction.展开更多
According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific probl...According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.展开更多
基金Supported by ihe Major State Basic Research Development Program of China (973 Program) (2010CB428801, 2010CB428804) the National Science Foundation of China (40972166)+1 种基金 the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07212-003) the Technology Development and Applications for Ecology System Reconstruction and Restoration of Yongding River (D08040903700000)
文摘Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.
基金supported by the National Natural Science Foundation of China (Grants 11002150,11332011,and 11402277)the Basic Research Equipment Project of the Chinese Academy of Sciences (YZ200930) for financia support
文摘Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP process.A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given.The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1 V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.
基金supported by National Natural Science Foundation of China(52074248)Fundamental Research Funds for the Central Universities(2652022207).
文摘The utilization of hydraulic fracturing for the extraction of natural gas hydrates in maritime environments has been relatively underexplored in the existing literature.This study introduces a novel approach by employing a fully implicit integration method to construct a two-dimensional temperature distribution model of the wellbore.The model considers critical parameters such as fracturing fluid time,initial temperature,and fracturing fluid displacement to forecast the temperature data of the wellbore and its surrounding environments throughout the entire fracturing process.The investigation reveals that the initial temperature of the fracturing liquid and the duration of the fracturing process exert a substantial influence on the wellbore temperature,whereas the impact of fracturing fluid displacement is found to be minimal.Furthermore,a comparative analysis between the results derived from the proposed model and those obtained from traditional steady-state formulas substantiates the accuracy and efficacy of the developed model.This study significantly advances our comprehension of temperature dynamics within wellbores during hydraulic fracturing operations in maritime environments,thereby offering valuable insights for future endeavors in natural gas hydrate extraction.
文摘According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.