期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Fracture parameter diagnostic method during staged multi-cluster fracturing based on distributed temperature sensing
1
作者 WEI Cao LI Haitao +4 位作者 ZHU Xiaohua ZHANG Nan LUO Hongwen TU Kun CHENG Shiqing 《Petroleum Exploration and Development》 2025年第2期496-505,共10页
The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr... The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance. 展开更多
关键词 shale oil horizontal well multi-stage multi-cluster fracturing distributed temperature sensing thermo-fluid coupling model fracture parameters real-time monitoring
在线阅读 下载PDF
P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion 被引量:3
2
作者 He Yi-Yuan Hu Tian-Yue +1 位作者 He Chuan Tan Yu-Yang 《Applied Geophysics》 SCIE CSCD 2016年第4期649-657,738,共10页
The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which... The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismie monitoring. 展开更多
关键词 ATI media attenuation anisotropy modified spectralratio method fracture parameters
在线阅读 下载PDF
Experimental study on tensile failure process of double-K fracture parameters in roller compacted concrete layer
3
作者 黄志强 宋玉普 王学志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第3期378-382,共5页
Study on failure of soft stratum of roller compacted concrete (RCC) is an important aspect of stability of high RCC dam. Six kinds of specimens with different interfaces were investigated by wedge splitting method. Do... Study on failure of soft stratum of roller compacted concrete (RCC) is an important aspect of stability of high RCC dam. Six kinds of specimens with different interfaces were investigated by wedge splitting method. Double-K fracture parameters (initial fracture parameter and unsteady fracture parameter) were calculated by the concrete double-K fracture theory. It is indicated that the approach of construction joint or old joint after RCC final set is the most efficient among the six cases, and its fracture parameter is the largest among them. Its propagation path is sinuous. Its failure surface is scraggly. Bedding plane crack fails at the underside of the concrete surface, bond course or the surface between them for each approach. So disturbance on the underside of the concrete surface should be avoided or decreased at best during RCC construction. 展开更多
关键词 RCC bedding plane crack wedge splitting double-K fracture parameters
在线阅读 下载PDF
Characteristics of strike-slip fault-related fractures and their controls on reservoir in Halahatang area,northern Tarim Basin
4
作者 Xiao-xu Liu Guang-hui Wu +5 位作者 Li-xin Chen Bing-shan Ma Zhou Su Bo Yang Xia Wang Bin Zhao 《China Geology》 2025年第4期740-753,共14页
The strike-slip fault system in the central Tarim Craton controls a complex petroleum system with estimated reserves exceeding 1×10^(9)t,the fault-related fractures are important for hydrocarbon accumulation.In t... The strike-slip fault system in the central Tarim Craton controls a complex petroleum system with estimated reserves exceeding 1×10^(9)t,the fault-related fractures are important for hydrocarbon accumulation.In this paper,the basic parameters such as density and width of fractures are counted and classified,and the effects of fractures on reservoirs are analyzed.The results show that:(1)Structural fractures and stylolite were widely developed in Halahatang area and experienced at least three stages of activity based on the infilling materials and crosscutting relationship.(2)Fracture density,width,aperture,and dip angle vary in different wells,but the relationship between the above parameters and the distance to the fault core indicates the fracture differences in the fault damage zone and further provides a method to divide the inner units in the fault damage zone.In addition,oil and gas wells with high production mainly concentrate in the inner unit.(3)The infilling materials and degree of fractures vary.Fractures formed in the early stage are more filled and less open,while the fractures formed in the late stage are relatively less filled and more open.(4)Fractures improve porosity to a certain extent but greatly increase permeability,especially in the inner zone of fault damage zone with large quantity,multiple inclinations,less filling and large width.These features contribute to the formation of a higher-quality reservoir,further improving oil and gas production.This paper provides a quantitative characterization method for the study of strike-slip fault-related fracture-caved reservoirs,and points out that fault damage zone,especially the inner zone of the fault damage zone,is the potential goal for oil and gas exploration. 展开更多
关键词 Petroleum system Strike-slip fault system fracture parameters Fracturing stage ORDOVICIAN Carbonate rock Fault damage zone fracture-cave reservoir Oil-gas exploration engineering Halahatang area Tarim Basin
在线阅读 下载PDF
Intelligent optimization method of fracturing parameters for shale oil reservoirs in Jimsar Sag,Junggar Basin,NW China
5
作者 WANG Yunjin ZHOU Fujian +5 位作者 SU Hang ZHENG Leyi LI Minghui YU Fuwei LI Yuan LIANG Tianbo 《Petroleum Exploration and Development》 2025年第3期830-841,共12页
For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter inte... For shale oil reservoirs in the Jimsar Sag of Junggar Basin,the fracturing treatments are challenged by poor prediction accuracy and difficulty in parameter optimization.This paper presents a fracturing parameter intelligent optimization technique for shale oil reservoirs and verifies it by field application.A self-governing database capable of automatic capture,storage,calls and analysis is established.With this database,22 geological and engineering variables are selected for correlation analysis.A separated fracturing effect prediction model is proposed,with the fracturing learning curve decomposed into two parts:(1)overall trend,which is predicted by the algorithm combining the convolutional neural network with the characteristics of local connection and parameter sharing and the gated recurrent unit that can solve the gradient disappearance;and(2)local fluctuation,which is predicted by integrating the adaptive boosting algorithm to dynamically adjust the random forest weight.A policy gradient-genetic-particle swarm algorithm is designed,which can adaptively adjust the inertia weights and learning factors in the iterative process,significantly improving the optimization ability of the optimization strategy.The fracturing effect prediction and optimization strategy are combined to realize the intelligent optimization of fracturing parameters.The field application verifies that the proposed technique significantly improves the fracturing effects of oil wells,and it has good practicability. 展开更多
关键词 Jimsar Sag shale oil fracturing parameter learning curve intelligent optimization reinforcement learning particle swarm algorithm
在线阅读 下载PDF
Optimization of fracturing parameters in multi-layer and multi-period cube development infill well pad:A case study on a three-layer cube development well pad of Sichuan Basin,SW China
6
作者 YANG Haixin ZHU Haiyan +5 位作者 LIU Yaowen TANG Xuanhe WANG Dajiang XIAO Jialin ZHU Danghui ZHAO Chongsheng 《Petroleum Exploration and Development》 2025年第3期817-829,共13页
The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sic... The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sichuan Basin.The fracture propagation and inter-well interference model were established based on the evolution of 4D in-situ stress,and the evolution characteristics of stress and the mechanism of interference between wells were analyzed.The research shows that the increase in horizontal stress difference and the existence of natural fractures/faults are the main reasons for inter-well interference.Inter-well interference is likely to occur near the fracture zones and between the infill wells and parent wells that have been in production for a long time.When communication channels are formed between the infill wells and parent wells,it can increase the productivity of parent wells in the short term.However,it will have a delayed negative impact on the long-term sustained production of both infill wells and parent wells.The change trend of in-situ stress caused by parent well production is basically consistent with the decline trend of pore pressure.The lateral disturbance range of in-situ stress is initially the same as the fracture length and reaches 1.5 to 1.6 times that length after 2.5 years.The key to avoiding inter-well interference is to optimize the fracturing parameters.By adopting the M-shaped well pattern,the optimal well spacing for the infill wells is 300 m,the cluster spacing is 10 m,and the liquid volume per stage is 1800 m^(3). 展开更多
关键词 shale gas cube development infill wells 4D-in-situ stress inter-well interference fracturing parameters optimization
在线阅读 下载PDF
Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters 被引量:4
7
作者 Jianqiang Xue Nianyin Li +2 位作者 Xiaobing Lu Suiwang Zhang Yong Wang 《Petroleum》 2017年第4期454-460,共7页
Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs.However,conventional productivity models for open-hole multi-fractured horizontal wel... Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs.However,conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments,resulting in significant errors in calculation results.In this article,a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories,potential superimposition,and numerical analysis.Herein,an open-hole segment between two adjacent fractures was regarded as an equivalent fracture,which was discretized as in cases of artificial fractures.The proposed model was then applied to investigate the effects of various parameters,such as the angle between the fracture and horizontal shaft,fracture quantity,fracture length,diversion capacity of fractures,horizontal well length,and inter-fracture distance,on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells.Simulation results revealed that the quantity,length,and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible.Additionally,a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. 展开更多
关键词 Low permeability gas reservoir Multi-fractured horizontal well Productivity prediction Open-hole completion Unsteady-state flow fracture parameters optimization
原文传递
Effects of strength matching and crack depth on the fracture parameters for welded joints
8
作者 Tang Wei and Shi Yaowu (Xi’an Jiaotong University) 《China Welding》 EI CAS 1994年第1期35-44,共10页
Fracture parameters of welded joints with different strength matching and crack depth in weld metal are investigated by using the methods of elastoplastic finite element analysis and three point bend specimen test. Th... Fracture parameters of welded joints with different strength matching and crack depth in weld metal are investigated by using the methods of elastoplastic finite element analysis and three point bend specimen test. The results show that for shallow crack, the plastic zone turns large in loading process, and the fracture toughness turns high. The extent of the plastic zone of overmatched joint is larger than that of undermatched joint because it will extends to parent metal from the weld metal in loading process for the same CTOD value. The plastic zone of undermatched joint is restricted within the weld, and the size of that is small. Overmatched joint shows the fracture behaviour of shallow crack may more easily than the undermatched joint, while the two sorts of joint specimens have the same crack depth. Therefore, the fracture-resistant capability of overmatched weld is better than that of undermatched weld. when the toughness of weld metals is similar for both overmatched and undermatched joints. 展开更多
关键词 welded joint fracture parameter plastic zone crack depth strength matching
在线阅读 下载PDF
Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area,China 被引量:1
9
作者 WEI Xiang GUO Ying +4 位作者 CHENG Hanlie WEI Jianfei ZHANG Linlin HUO Liang HOU Zhenkun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1381-1392,共12页
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,... The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal. 展开更多
关键词 fracture geometry parameters rock mass structure high-level radioactive waste disposal RMSR Beishan area
在线阅读 下载PDF
Fracture propagation,proppant transport and parameter optimization of multi-well pad fracturing treatment
10
作者 YANG Peng ZHANG Shicheng +4 位作者 ZOU Yushi LI Jianmin MA Xinfang TIAN Gang WANG Junchao 《Petroleum Exploration and Development》 SCIE 2023年第5期1225-1235,共11页
This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks,and the fr... This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks,and the fracture propagation and proppant distribution during multi-well fracturing are investigated by taking the actual multi-well pad parameters as an example.Fracture initiation and propagation during multi-well pad fracturing are jointly affected by a variety of stress interference mechanisms such as inter-cluster,inter-stage,and inter-well,and the fracture extension is unbalanced among clusters,asymmetric on both wings,and dipping at heels.Due to the significant influence of fracture morphology and width on the migration capacity of proppant in the fracture,proppant is mainly placed in the area near the wellbore with large fracture width,while a high-concentration sandwash may easily occur in the area with narrow fracture width as a result of quick bridging.On the whole,the proppant placement range is limited.Increasing the well-spacing can reduce the stress interference of adjacent wells and promote the uniform distribution of fractures and proppant on both wings.The maximum stimulated reservoir volume or multi-fracture uniform propagation can be achieved by optimizing the well spacing.Although reducing the perforation-cluster spacing also can improve the stimulated reservoir area,a too low cluster spacing is not conducive to effectively increasing the propped fracture area.Since increasing the stage time lag is beneficial to reduce inter-stage stress interference,zipper fracturing produces more uniform fracture propagation and proppant distribution. 展开更多
关键词 multi-well pad multi-well fracturing fracture propagation proppant transport coupled numerical model fracturing parameter optimization
在线阅读 下载PDF
A Data-Oriented Method to Optimize Hydraulic Fracturing Parameters of Tight Sandstone Reservoirs
11
作者 Zhengrong Chen Mao Jiang +2 位作者 Chuanzhi Ai Jianshu Wu Xin Xie 《Energy Engineering》 EI 2024年第6期1657-1669,共13页
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands... Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency. 展开更多
关键词 Data mechanism driven fracturing parameters gas production CORRELATION tight sandstone gas
在线阅读 下载PDF
Coseismic surface rupture prediction models based on Bayesian ridge regression and their validation in the 2023 Türkiye earthquake doublet
12
作者 Jin Chaoyue Zhang Ji Xu Longjun 《Earthquake Engineering and Engineering Vibration》 2025年第2期283-300,I0001-I0028,共46页
Seismic fault rupture can extend to the surface,and the resulting surface deformation can cause severe damage to civil engineering structures crossing the fault zones.Coseismic Surface Rupture Prediction Models(CSRPMs... Seismic fault rupture can extend to the surface,and the resulting surface deformation can cause severe damage to civil engineering structures crossing the fault zones.Coseismic Surface Rupture Prediction Models(CSRPMs)play a crucial role in the structural design of fault-crossing engineering and in the hazard analysis of fault-intensive areas.In this study,a new global coseismic surface rupture database was constructed by compiling 171 earthquake events(Mw:5.5-7.9)that caused surface rupture.In contrast to the fault classification in traditional empirical relationships,this study categorizes earthquake events as strike-slip,dip-slip,and oblique-slip.CSRPMs utilizing Bayesian ridge regression(BRR)were developed to estimate parameters such as surface rupture length,average displacement,and maximum displacement.Based on Bayesian theory,BRR combines the benefits of both ridge regression and Bayesian linear regression.This approach effectively addresses the issue of overfitting while ensuring the strong model robustness.The reliability of the CSRPMs was validated by residual analysis and comparison with post-earthquake observations from the 2023 Türkiye earthquake doublet.The BRR-CSRPMs with new fault classification criteria are more suitable for the probabilistic hazard analysis of complex fault systems and dislocation design of fault-crossing engineering. 展开更多
关键词 fault surface rupture coseismic deformation fracture parameters fault types Bayesian ridge regression
在线阅读 下载PDF
Calculation Model of Equivalent Strength for Induced Crack Based on Double-K Fracture Theory and Its Optimizing Setting in RCC Arch Dam 被引量:8
13
作者 张小刚 宋玉普 吴智敏 《Transactions of Tianjin University》 EI CAS 2005年第1期59-65,共7页
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t... By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice. 展开更多
关键词 roller-compacted concrete (RCC) arch dam induced crack double-K fracture parameters equivalent strength calculation model optimizing setting
在线阅读 下载PDF
Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media 被引量:2
14
作者 Chenghui XU Sen LENG +2 位作者 Zhenhuan ZHOU Xinsheng XU Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第3期403-416,共14页
An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D)viscoelastic media.The fractional Kelvin-Zener constitutive model is used to describe the time-... An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D)viscoelastic media.The fractional Kelvin-Zener constitutive model is used to describe the time-dependent behavior of viscoelastic materials.Within the framework of symplectic elasticity,the governing equations in the Hamiltonian form for the frequency domain(s-domain)can be directly and rigorously calculated.In the s-domain,the analytical solutions of the displacement and stress fields are constructed by superposing the symplectic eigensolutions without any trial function,and the explicit expressions of the intensity factors and J-integral are derived simultaneously.Comparison studies are provided to validate the accuracy and effectiveness of the present solutions.A detailed analysis is made to reveal the effects of viscoelastic parameters and applied loads on the intensity factors and J-integral. 展开更多
关键词 symplectic approach viscoelastic material fractional Kelvin-Zener model CRACK fracture parameter
在线阅读 下载PDF
DICE:An open-source MATLAB application for quantification and parametrization of digital outcrop model-based fracture datasets 被引量:2
15
作者 Niccolò Menegoni Daniele Giordan +1 位作者 Riccardo Inama Cesare Perotti 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1090-1110,共21页
An open-source MATLAB application(app)named Discontinuity Intensity Calculator and Estimator(DICE)was developed in order to quantitatively characterize the fractures,or in more general,discontinuities within a rocky o... An open-source MATLAB application(app)named Discontinuity Intensity Calculator and Estimator(DICE)was developed in order to quantitatively characterize the fractures,or in more general,discontinuities within a rocky outcrop in three-dimensional(3D)digital data,such as digital outcrop model(DOM).The workflow proposed for the parametrization of the discontinuities consists of the following steps:(1)Analysis and mapping of the fractures detected within the 3D DOMs;(2)Calculation of the orientation,position and dimensions of discontinuities that are represented by best-fit circular planes;(3)Determining the discontinuity parameters(dimension,distribution,spacing and intensity)by the DICE algorithm using different 3D oriented sampling techniques(3D oriented scanline,3D oriented circular scan window and spherical scan volume).Different sampling methods were bench tested with a synthetic,as well as a natural case study,and compared in order to understand the advantages and limitations of each technique.The 3D oriented circular scan window appears to be the most effective method for fracture intensity estimation with high accuracy(error 0.4%)and stability with variations in scan radius. 展开更多
关键词 fracture parameter DISCONTINUITY Fault fracture intensity Linear fracture intensity(P10) Areal fracture intensity(P21) Volumetric fracture intensity(P32)
在线阅读 下载PDF
A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design 被引量:4
16
作者 LEI Qun WENG Dingwei +5 位作者 GUAN Baoshan MU Lijun XU Yun WANG Zhen GUO Ying LI Shuai 《Petroleum Exploration and Development》 2020年第3期632-641,共10页
To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during la... To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly. 展开更多
关键词 tight oil reservoir STIMULATION horizontal well fracture controlling fracturing multi-stage and multi-cluster fracturing fracture parameter
在线阅读 下载PDF
A review of the effect of a/W ratio on fracture toughness (Ⅲ)——theoretical analysis
17
作者 LI Qing-fen ZHENG Wei SHU Hai-sheng 《Journal of Marine Science and Application》 2005年第3期1-4,共4页
In part I and II of this series, experimental investigation in both EPFM and LEFM had been discussed. In this part, further theoretical analysis is given. The theoretical development of Two Parameter Fracture Mechanic... In part I and II of this series, experimental investigation in both EPFM and LEFM had been discussed. In this part, further theoretical analysis is given. The theoretical development of Two Parameter Fracture Mechanics by Hancock etc, has rationalized our experimental results. This method can be applied to engineering practice, and will allow the advantage of enhanced toughness for specimens with low levels of constraint to be taken into account for defect assessment. 展开更多
关键词 two parameter fracture mechanics T-STRESS CONSTRAINT fracture toughness a/ W ratio
在线阅读 下载PDF
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
18
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 Ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
在线阅读 下载PDF
Assessment of Carboniferous Volcanic Horizontal Wells after Fracturing Based on Gray Correlation,Hierarchical Analysis and Fuzzy Evaluation
19
作者 Junwei Han Guohua Li +5 位作者 Wu Zhong Yuchen Yang Maoheng Li Zhiwei Chen Ruichang Ge Lijuan Huang 《Fluid Dynamics & Materials Processing》 EI 2024年第12期2757-2773,共17页
A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated.A systematic approach combining gray correlation an... A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated.A systematic approach combining gray correlation analysis,hierarchical analysis and fuzzy evaluation is proposed.In particular,first the incidence of reservoir properties and fracturing parameters on production capacity is assessed.These parameters include reservoir base geological parameters(porosity,permeability,oil saturation,waterproof height)as well as engineering parameters(fracture halflength,fracture height,fracture conductivity,fracture distance).Afterwards,a two-by-two comparison judgment matrix of sensitive parameters is constructed by means of hierarchical analysis,and the weighting coefficients of the factors are determined,where oil saturation,fracture conductivity and fracture half-length are weighted higher.Finally,the horizontal wells in the target block are categorized in terms of production capacity based on the fuzzy evaluation method,and split accordingly into high-producing,relatively high-producing,medium-producing and low-producing wells.Such a categorization is intended to provide parametric guidance for reservoir fracturing and modification. 展开更多
关键词 Fracturing parameter horizontal well grey correlation hierarchical analysis fuzzy evaluation productivity evaluation
在线阅读 下载PDF
An Integrated Optimization Method for CO_(2) Pre-Injection during Hydraulic Fracturing in Heavy Oil Reservoirs
20
作者 Hong Dong Xiding Gao +6 位作者 Xinqi Zhang Qian Wang Haipeng Xu Binrui Wang Chengguo Gao Kaiwen Luo Hengyi Jiang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1971-1991,共21页
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability... CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing. 展开更多
关键词 Heavy oil reservoir pre-storage CO_(2)energy fracturing horizontal well fracturing parameters numerical simulation
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部