The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating load...The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.展开更多
The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundar...The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundaries in the form of ZrC particle and Ni 5Zr eutectic phase which can refine microstructure. Ni 5Zr phase can alleviate the crack initiation at grain boundaries and dendrite boundaries, which helps deformation to be harmonical between matrix and precipitates at elevated temperature.展开更多
Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous report...Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study展开更多
The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour i...The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions展开更多
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test...The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.展开更多
In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearin...In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.展开更多
Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of th...Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.展开更多
DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy a...DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy at 760 ℃/758 MPa, 850 ℃/550 MPa and 980 ℃/250 MPa were investigated and compared with those of longitudinal specimens. The transverse stress rupture lives are corresponding with the longitudinal stress rupture lives at 760 ℃/758 MPa and 850 ℃/550 MPa. The transverse stress rupture lives are slightly less than the longitudinal stress rupture lives at 980 ℃/ 250 MPa. The fracture mechanism of the transverse stress rupture of the alloy at 760 ℃/758 MPa shows quasi-cleav- age mode and the fracture mechanism at 980 ℃/250 MPa shows dimple mode, while the fracture mechanism at 850 ℃/ 550 MPa shows quasi-cleavage and dimple mixture mode. At higher temperature and lower stress, the microeracks are easier to initiate and interconnect in the transverse specimen than those in longitudinal specimen because there are interdendritic regions perpendicular to the axis of stress.展开更多
基金the research core funding(No.P2-0063)the basic research project(No.J2-8186)from the Slovenian Research Agency.
文摘The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.
文摘The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundaries in the form of ZrC particle and Ni 5Zr eutectic phase which can refine microstructure. Ni 5Zr phase can alleviate the crack initiation at grain boundaries and dendrite boundaries, which helps deformation to be harmonical between matrix and precipitates at elevated temperature.
文摘Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study
文摘The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions
基金supported by the National Natural Science Foundation of China(No.51804309)the Yue Qi Young Scholar Project(2019QN02)+5 种基金Distinguished Scholar Project(2017JCB02)from China University of Mining and Technology-Beijing,Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.10)National Natural Science Foundation of China(No.U1910206)the fund of Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the State Key Laboratory of Coal Resources and Safe Mining(Nos.SKLCRSM16KFB07,SKLCRSM16DCB01 and SKLCRSM17DC11)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)the key project of Key Laboratory of Coal Mine Safety and High Efficiency Mining Co-established by the Province and the Ministry(Anhui University of Science and Technology)(No.JYBSYS2018201).
文摘The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.
文摘In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.
基金Projects(51308363,11327801)supported by the National Natural Science Foundation of ChinaProject(2013-1792-9-4)supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(YJ201307)supported by the Start-up Research Fund for Introduced Talents of Sichuan University,China
文摘Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.
文摘DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy at 760 ℃/758 MPa, 850 ℃/550 MPa and 980 ℃/250 MPa were investigated and compared with those of longitudinal specimens. The transverse stress rupture lives are corresponding with the longitudinal stress rupture lives at 760 ℃/758 MPa and 850 ℃/550 MPa. The transverse stress rupture lives are slightly less than the longitudinal stress rupture lives at 980 ℃/ 250 MPa. The fracture mechanism of the transverse stress rupture of the alloy at 760 ℃/758 MPa shows quasi-cleav- age mode and the fracture mechanism at 980 ℃/250 MPa shows dimple mode, while the fracture mechanism at 850 ℃/ 550 MPa shows quasi-cleavage and dimple mixture mode. At higher temperature and lower stress, the microeracks are easier to initiate and interconnect in the transverse specimen than those in longitudinal specimen because there are interdendritic regions perpendicular to the axis of stress.