期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
A micromechanical friction-damage fatigue model of rock materials under cyclic loadings using a fractional plastic flow rule
1
作者 Jin Zhang Ke Ren +3 位作者 Zhigang Tao Tao Ni Qi-Zhi Zhu Jianfu Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6248-6263,共16页
This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstruc... This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature. 展开更多
关键词 Fractional model MICROMECHANICS Fatigue damage Rock material Cyclic loadings
在线阅读 下载PDF
A Design of Predictive Intelligent Networks for the Analysis of Fractional Model of TB-Virus
2
作者 Muhammad Asif Zahoor Raja Aqsa Zafar Abbasi +2 位作者 Kottakkaran Sooppy Nisar Ayesha Rafiq Muhammad Shoaib 《Computer Modeling in Engineering & Sciences》 2025年第5期2133-2153,共21页
Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differenti... Being a nonlinear operator,fractional derivatives can affect the enforcement of existence at any given time.As a result,the memory effect has an impact on all nonlinear processes modeled by fractional order differential equations(FODEs).The goal of this study is to increase the fractional model of the TB virus’s(FMTBV)accuracy.Stochastic solvers have never been used to solve FMTBV previously.The Bayesian regularized artificial(BRA)method and neural networks(NNs),often referred to as BRA-NNs,were used to solve the FMTBV model.Each scenario features five occurrences that each reflect a different order of derivatives,ranging from 0.8,0.85,0.9,0.95,and 1,as well as five potential rates for different parameters.Training data made up 90%of the data,testing data made up 5%,and validation data made up 5%of the data used to illustrate the FMTBV’s approximations.To verify that the BRA-NNs were correct,the generated simulations were described in the following solutions using the FOLotkaVolterra approach in MATLAB.Comprehensive Simulink results in terms of mean square error,error histogram,and regression analysis investigations further highlight the competence,dependability,and accuracy of the suggested BRA-NNs. 展开更多
关键词 Fractional model of TB-Virus(FMTBV) artificial neural network bayesian regularization
在线阅读 下载PDF
Modeling Oil Production and Heat Distribution during Hot Water-Flooding in an Oil Reservoir
3
作者 Chinedu Nwaigwe Abdon Atangana 《Fluid Dynamics & Materials Processing》 2025年第5期1239-1260,共22页
In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature a... In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate.This is the focus of the current study.It proposes variableviscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil,with the aim of investigating the effects of water temperature and velocity on the recovery rate.First,two sets of experimental data are used to construct explicit temperature-dependent viscosity models for Bonny-light crude oil and water.These viscosity models are incorporated into the Buckley-Leverette equation for the dynamics of water saturation.A convex combination of the thermal conductivities of oil and water is used to formulate a heat propagation model.A finite volume scheme with temperature-dependent HLL numerical flux is proposed for saturation,while a finite difference approximation is derived for the heat model,both on a staggered grid.The convergence of the method is verified numerically.Simulations are conducted with different parameter values.The results show that at a wall temperature of 10℃,an increase in the injection velocity from 0.1 to 0.25 increases the production rate from 8.33%to 20.8%.Meanwhile,with an injection velocity of v=1,an increase in the temperature of the injected water from 25℃ to 55℃ increases production rate from 59.48%to 61.95%.Therefore,it is concluded that an increase in either or both the temperature and velocity of the injected water leads to increased oil production,which is physically realistic.This indicates that the developed model is able to give useful insights into hot water flooding. 展开更多
关键词 Oil recovery injecting velocity HLL finite volume method Buckley-Leverette equation fractional flow model temperature-dependent viscosity models water saturation
在线阅读 下载PDF
Mathematical Modeling of Leukemia within Stochastic Fractional Delay Differential Equations
4
作者 Ali Raza Feliz Minhós +1 位作者 Umar Shafique Muhammad Mohsin 《Computer Modeling in Engineering & Sciences》 2025年第6期3411-3431,共21页
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6... In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities. 展开更多
关键词 Leukemia disease stochastic fractional delayed model stability analysis Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD) computational methods
在线阅读 下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:5
5
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
在线阅读 下载PDF
Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration 被引量:3
6
作者 LI Wenbiao LU Shuangfang +6 位作者 LI Junqian WEI Yongbo ZHAO Shengxian ZHANG Pengfei WANG Ziyi LI Xiao WANG Jun 《Petroleum Exploration and Development》 CSCD 2022年第5期1069-1084,共16页
The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative character... The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative characterization model, and geological application. It is found that the isotopic fractionation during the complete production of shale gas/coalbed methane shows a four-stage characteristic of “stable-lighter-heavier-lighter again”, which is related to the complex gas migration modes in the pores of shale/coal. The gas migration mechanisms in shale/coal include seepage, diffusion, and adsorption/desorption. Among them, seepage driven by pressure difference does not induce isotopic fractionation, while diffusion and adsorption/desorption lead to significant isotope fractionation. The existing characterization models of isotopic fractionation include diffusion fractionation model, diffusion-adsorption/desorption coupled model, and multi-scale and multi-mechanism coupled model. Results of model calculations show that the isotopic fractionation during natural gas migration is mainly controlled by pore structure, adsorption capacity, and initial/boundary conditions of the reservoir rock. So far, the isotope fractionation model has been successfully used to evaluate critical parameters, such as gas-in-place content and ratio of adsorbed/free gas in shale/coal etc. Furthermore, it has shown promising application potential in production status identification and decline trend prediction of gas well. Future research should focus on:(1) the co-evolution of carbon and hydrogen isotopes of different components during natural gas migration,(2) the characterization of isotopic fractionation during the whole process of gas generation-expulsion-migration-accumulation-dispersion, and(3) quantitative characterization of isotopic fractionation during natural gas migration in complex pore-fracture systems and its application. 展开更多
关键词 shale gas coalbed methane diffusive fractionation adsorption/desorption fractionation isotope fractionation model natural gas migration
在线阅读 下载PDF
PLANE SURFACE SUDDENLY SET IN MOTION IN A VISCOELASTIC FLUID WITH FRACTIONAL MAXWELL MODEL 被引量:19
7
作者 谭文长 徐明瑜 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第4期342-349,共8页
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the frac... The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak. 展开更多
关键词 viscoelastic fluid fractional calculus Stokes problem fractional Maxwell model
在线阅读 下载PDF
Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders 被引量:9
8
作者 Haitao Qi Hui Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期301-305,共5页
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ... The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus. 展开更多
关键词 Viscoelastic fluid Unsteady flow Fractional Maxwell model Exact solution
在线阅读 下载PDF
A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries 被引量:6
9
作者 Jinpeng Tian Rui Xiong +1 位作者 Weixiang Shen Ju Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期98-112,共15页
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p... State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift. 展开更多
关键词 Electric vehicle Lithium ion battery Fractional order model State of charge
在线阅读 下载PDF
Modeling mechanism of a novel fractional grey mode based on matrix analysis 被引量:3
10
作者 shuhua mao min zhu +2 位作者 xinping yan mingyun gao xinping xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1040-1053,共14页
To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and... To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism. 展开更多
关键词 fractional order grey model generalized accumulativegeneration matrix decomposition non-equidistance sequence modeling mechanism.
在线阅读 下载PDF
Simulation of the Fate of Faecal Bacteria in Estuarine and Coastal Waters Based on A Fractionated Sediment Transport Model 被引量:1
11
作者 YANG Chen LIU Ying 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期389-395,共7页
A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sedimen... A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model. 展开更多
关键词 bed evolution decay rate esmarine and coastal water faecal bacteria fractionated model sediment Wansport
在线阅读 下载PDF
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
12
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 Quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
在线阅读 下载PDF
A Theoretical Investigation of the SARS-CoV-2Model via Fractional Order Epidemiological Model 被引量:1
13
作者 Tahir Khan Rahman Ullah +2 位作者 Thabet Abdeljawad Manar A.Alqudah Faizullah Faiz 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1295-1313,共19页
We propose a theoretical study investigating the spread of the novel coronavirus(COVID-19)reported inWuhan City of China in 2019.We develop a mathematical model based on the novel corona virus’s characteristics and t... We propose a theoretical study investigating the spread of the novel coronavirus(COVID-19)reported inWuhan City of China in 2019.We develop a mathematical model based on the novel corona virus’s characteristics and then use fractional calculus to fractionalize it.Various fractional order epidemicmodels have been formulated and analyzed using a number of iterative and numerical approacheswhile the complications arise due to singular kernel.We use the well-known Caputo-Fabrizio operator for the purposes of fictionalization because this operator is based on the non-singular kernel.Moreover,to analyze the existence and uniqueness,we will use the well-known fixed point theory.We also prove that the considered model has positive and bounded solutions.We also draw some numerical simulations to verify the theoretical work via graphical representations.We believe that the proposed epidemic model will be helpful for health officials to take some positive steps to control contagious diseases. 展开更多
关键词 Fractional epidemiological model for corona virus disease caputo-fabrizio operator numerical simulation
暂未订购
A Fractional Drift Diffusion Model for Organic Semiconductor Devices 被引量:1
14
作者 Yi Yang Robert A.Nawrocki +1 位作者 Richard M.Voyles Haiyan H.Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第10期237-266,共30页
Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on ... Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on solving the governing equations of the Fr-DD model is practically nonexistent.In this paper,an iterative solver with high precision is developed to solve both the transient and steady-state Fr-DD model for organic semiconductor devices.The Fr-DD model is composed of two fractionalorder carriers(i.e.,electrons and holes)continuity equations coupled with Poisson’s equation.By treating the current density as constants within each pair of consecutive grid nodes,a linear Caputo’s fractional-order ordinary differential equation(FrODE)can be produced,and its analytic solution gives an approximation to the carrier concentration.The convergence of the solver is guaranteed by implementing a successive over-relaxation(SOR)mechanism on each loop of Gummel’s iteration.Based on our derivations,it can be shown that the Scharfetter–Gummel discretization method is essentially a special case of our scheme.In addition,the consistency and convergence of the two core algorithms are proved,with three numerical examples designed to demonstrate the accuracy and computational performance of this solver.Finally,we validate the Fr-DD model for a steady-state organic field effect transistor(OFET)by fitting the simulated transconductance and output curves to the experimental data. 展开更多
关键词 Fractional drift diffusion model Gummel’s iteration Caputo’s fractional-order ordinary differential equation organic field effect transistor
在线阅读 下载PDF
Equilibrium and kinetic Si isotope fractionation factors and their implications for Si isotope distributions in the Earth's surface environments 被引量:3
15
作者 Hong-tao He Siting Zhang +1 位作者 Chen Zhu Yun Liu 《Acta Geochimica》 EI CAS CSCD 2016年第1期15-24,共10页
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth'... Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants. 展开更多
关键词 Si isotopes Equilibrium fractionation factor Quantum chemistry calculation Cluster model Kinetic isotope effect
在线阅读 下载PDF
Numerical Analysis and Transformative Predictions of Fractional Order Epidemic Model during COVID-19 Pandemic: A Critical Study from Bangladesh 被引量:1
16
作者 Ovijit Chandrow Neloy Chandra Das +2 位作者 Niloy Chandra Shil Niloy Dey Md. Tareque Rahaman 《Journal of Applied Mathematics and Physics》 2021年第9期2258-2276,共19页
The COVID-19 pandemic is a curse and a threat to global health, development, the economy, and peaceful society because of its massive transmission and high rates of mutation. More than 220 countries have been affected... The COVID-19 pandemic is a curse and a threat to global health, development, the economy, and peaceful society because of its massive transmission and high rates of mutation. More than 220 countries have been affected by COVID-19. The world is now facing a drastic situation because of this ongoing virus. Bangladesh is also dealing with this issue, and due to its dense population, it is particularly vulnerable to the spread of COVID-19. Recently, many non-linear systems have been proposed to solve the SIR (Susceptible, Infected, and Recovered) model for predicting Coronavirus cases. In this paper, we have discussed the fractional order SIR epidemic model of a non-fatal disease in a population of a constant size. Using the Laplace Adomian Decomposition method, we get an approximate solution to the model. To predict the dynamic transmission of COVID-19 in Bangladesh, we provide a numerical argument based on real data. We also conducted a comparative analysis among susceptible, infected, and recovered people. Furthermore, the most sensitive parameters for the Basic Reproduction Number (<em>R</em><sub>0</sub>) are graphically presented, and the impact of the compartments on the transmission dynamics of the COVID-19 pandemic is thoroughly investigated. 展开更多
关键词 COVID-19 BANGLADESH Fractional Order SIR model Laplace Adomian Decomposition Method BRN
在线阅读 下载PDF
Analytical wave solutions of an electronically and biologically important model via two efficient schemes
17
作者 Qingbo Huang Asim Zafar +1 位作者 M.Raheel Ahmet Bekir 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期269-278,共10页
We search for analytical wave solutions of an electronically and biologically important model named as the Fitzhugh–Nagumo model with truncated M-fractional derivative, in which the expafunction and extended sinh-Gor... We search for analytical wave solutions of an electronically and biologically important model named as the Fitzhugh–Nagumo model with truncated M-fractional derivative, in which the expafunction and extended sinh-Gordon equation expansion(ESh GEE) schemes are utilized. The solutions obtained include dark, bright, dark-bright, periodic and other kinds of solitons. These analytical wave solutions are gained and verified with the use of Mathematica software. These solutions do not exist in literature. Some of the solutions are demonstrated by 2D, 3D and contour graphs. This model is mostly used in circuit theory, transmission of nerve impulses, and population genetics. Finally, both the schemes are more applicable, reliable and significant to deal with the fractional nonlinear partial differential equations. 展开更多
关键词 spacetime fractional Fitzhugh-Nagumo model truncated M-fractional derivative expa function scheme EShGEE scheme analytical wave solutions
原文传递
Model Identification and Control of Electromagnetic Actuation in Continuous Casting Process With Improved Quality
18
作者 Isabela Birs Cristina Muresan +1 位作者 Dana Copot Clara Ionescu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期203-215,共13页
This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natu... This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natural convergence of distributed parameter systems to fractional order transfer function models. Data driven identification from a real continuous casting line is used to identify model of the electromagnetic actuator device to control flow velocity of liquid steel. To ensure product specifications, a fractional order control is designed and validated on the system. A projection of the closed loop performance onto the quality assessment at end production line is also given in this paper. 展开更多
关键词 Electromagnetic actuator fractional order control fractional order system model non-Newtonian material
在线阅读 下载PDF
Letter to the Editor Re “Fractional Modeling and SOC Estimation of Lithium-ion Battery”
19
作者 Rahat Hasan Jonathan Scott 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期644-644,共1页
A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].T... A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].The proposed equivalent circuit model from[1]is reproduced in Fig.1. 展开更多
关键词 Fractional modeling and SOC Estimation of Lithium-ion Battery Letter to the Editor Re
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部