Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s...Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.展开更多
In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli pie...In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor no...The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor noise resistance.To overcome these issues,a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed.The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture,making it suitable for cryptographic applications.Furthermore,the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies:an active control method ensuring asymptotic convergence,and a finite-time control method enabling faster stabilization.The robustness of the scheme is confirmed by simulation results on a color image:χ^(2)=253/237/267(R/G/B);entropy≈7.993;correlations between adjacent pixels in all directions are close to zero(e.g.,-0.0318 vertically);and high number of pixel change rate and unified average changing intensity(e.g.,33.40%and 99.61%,respectively).Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained.It is shown that multiple fractional orders further enrich the chaotic behavior,increasing the systems suitability for secure communication in embedded environments.These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications.展开更多
This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncer...This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncertainties,and actuator saturation.A novel nonlinear disturbance observer modified by fractional-order calculus is proposed for flexible and less conservative estimation of lumped disturbances.An enhanced adaptive fractional-order nonsingular sliding mode scheme augmented by disturbance estimation is also introduced to improve disturbance rejection.This controller design only necessitates surpassing the estimation error rather than adhering strictly to the disturbance upper bound.Additionally,an adaptive fast-reaching law with a hyperbolic tangent function is incorporated to enhance the responsiveness and convergence rates of the controller,thereby reducing chattering.Furthermore,an auxiliary actuator compensator is developed to address saturation effects.The resultant closed system of the FSHC with the designed controller is globally asymptotically stable.展开更多
This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then in...This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.展开更多
In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The low...In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.展开更多
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or...In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.展开更多
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a...In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.展开更多
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional cal...In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.展开更多
In this paper, chaotic behaviours in the fractional-order Liu system are studied. Based on the approximation theory of fractional-order operator, circuits are designed to simulate the fractional- order Liu system with...In this paper, chaotic behaviours in the fractional-order Liu system are studied. Based on the approximation theory of fractional-order operator, circuits are designed to simulate the fractional- order Liu system with q=0.1 - 0.9 in a step of 0.1, and an experiment has demonstrated the 2.7-order Liu system. The simulation results prove that the chaos exists indeed in the fractional-order Liu system with an order as low as 0.3. The experimental results prove that the fractional-order chaotic system can be realized by using hardware devices, which lays the foundation for its practical applications.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv...This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh...This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency.展开更多
In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is t...In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is the time-domain method that is analysed by using the Lyapunov stability theory. Finally, the numerical simulations are used-to illustrate the effectiveness of the proposed synchronization methods.展开更多
The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. I...The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov’s stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given.展开更多
This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability cri...This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.展开更多
基金support from the National Natural Science Foundation of China(No.52308316)the Scientific Research Foundation of Weifang University(Grant No.2024BS42)+2 种基金China Postdoctoral Science Foundation(No.2022M721885)the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(NO.SKLGME023017).
文摘Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.
基金Project supported by the National Natural Science Foundation of China(No.12172169)。
文摘In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
文摘The dynamics of chaotic memristor-based systems offer promising potential for secure communication.However,existing solutions frequently suffer from drawbacks such as slow synchronization,low key diversity,and poor noise resistance.To overcome these issues,a novel fractional-order chaotic system incorporating a memristor emulator derived from the Shinriki oscillator is proposed.The main contribution lies in the enhanced dynamic complexity and flexibility of the proposed architecture,making it suitable for cryptographic applications.Furthermore,the feasibility of synchronization to ensure secure data transmission is demonstrated through the validation of two strategies:an active control method ensuring asymptotic convergence,and a finite-time control method enabling faster stabilization.The robustness of the scheme is confirmed by simulation results on a color image:χ^(2)=253/237/267(R/G/B);entropy≈7.993;correlations between adjacent pixels in all directions are close to zero(e.g.,-0.0318 vertically);and high number of pixel change rate and unified average changing intensity(e.g.,33.40%and 99.61%,respectively).Peak signal-to-noise ratio analysis shows that resilience to noise and external disturbances is maintained.It is shown that multiple fractional orders further enrich the chaotic behavior,increasing the systems suitability for secure communication in embedded environments.These findings highlight the relevance of fractional-order chaotic memristive systems for lightweight secure transmission applications.
基金Supported by Natural Science Basic Research Program of Shaanxi under Grant No.2023-JC-QN-0751,No.2023-JC-QN-0778Fundamental Research Funds for the Central Universities,CHD under Grant No.300102324102+1 种基金the National Natural Science Foundation of China under Grant Nos.72471035,52271313Fundamental Research Funds for the Central Universities under Grant No.XK2040021004025.
文摘This study introduces an enhanced adaptive fractional-order nonsingular terminal sliding mode controller(AFONTSMC)tailored for stabilizing a fully submerged hydrofoil craft(FSHC)under external disturbances,model uncertainties,and actuator saturation.A novel nonlinear disturbance observer modified by fractional-order calculus is proposed for flexible and less conservative estimation of lumped disturbances.An enhanced adaptive fractional-order nonsingular sliding mode scheme augmented by disturbance estimation is also introduced to improve disturbance rejection.This controller design only necessitates surpassing the estimation error rather than adhering strictly to the disturbance upper bound.Additionally,an adaptive fast-reaching law with a hyperbolic tangent function is incorporated to enhance the responsiveness and convergence rates of the controller,thereby reducing chattering.Furthermore,an auxiliary actuator compensator is developed to address saturation effects.The resultant closed system of the FSHC with the designed controller is globally asymptotically stable.
文摘This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.
基金Project supported by the National Natural Science Foundation of China (Grant No 60404005).
文摘In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.
文摘In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023,60871025,and 10862001)the Natural Science Foundation of Guangdong Province,China (Grant Nos. S2011010001018 and 8151009001000060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003)
文摘In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177117)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
文摘In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
文摘In this paper, chaotic behaviours in the fractional-order Liu system are studied. Based on the approximation theory of fractional-order operator, circuits are designed to simulate the fractional- order Liu system with q=0.1 - 0.9 in a step of 0.1, and an experiment has demonstrated the 2.7-order Liu system. The simulation results prove that the chaos exists indeed in the fractional-order Liu system with an order as low as 0.3. The experimental results prove that the fractional-order chaotic system can be realized by using hardware devices, which lays the foundation for its practical applications.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
文摘This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
文摘This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency.
文摘In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is the time-domain method that is analysed by using the Lyapunov stability theory. Finally, the numerical simulations are used-to illustrate the effectiveness of the proposed synchronization methods.
文摘The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov’s stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given.
基金Supported by the Natural Science Foundation of Chongqing City (No. CSTC2004BB2165) and Research Foundation of Chongqing University of Posts and Telecommunications (No. A2005-47)
文摘This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.