期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Numerical Solution of the Rotating Shallow Water Flows with Topography Using the Fractional Steps Method
1
作者 Hossam S. Hassan Khaled T. Ramadan Sarwat N. Hanna 《Applied Mathematics》 2010年第2期104-117,共14页
The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting... The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is successively integrated in every direction along the characteristics using the Riemann invariant associated with the cubic spline interpolation. The height and the velocity field of the shallow water equations over irregular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and the free surface elevation have been studied and the results are plotted. 展开更多
关键词 Shallow Water Equations fractional steps method RIEMANN INVARIANTS Bottom TOPOGRAPHY Cubic SPLINE Interpolation
在线阅读 下载PDF
A Split-Step Predictor-Corrector Method for Space-Fractional Reaction-Diffusion Equations with Nonhomogeneous Boundary Conditions
2
作者 Kamran Kazmi Abdul Khaliq 《Communications on Applied Mathematics and Computation》 2019年第4期525-544,共20页
A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix tra... A split-step second-order predictor-corrector method for space-fractional reaction-diffusion equations with nonhomogeneous boundary conditions is presented and analyzed for the stability and convergence.The matrix transfer technique is used for spatial discretization of the problem.The method is shown to be unconditionally stable and second-order convergent.Numerical experiments are performed to confirm the stability and secondorder convergence of the method.The split-step predictor-corrector method is also compared with an IMEX predictor-corrector method which is found to incur oscillatory behavior for some time steps.Our method is seen to produce reliable and oscillatioresults for any time step when implemented on numerical examples with nonsmooth initial data.We also present a priori reliability constraint for the IMEX predictor-corrector method to avoid unwanted oscillations and show its validity numerically. 展开更多
关键词 fractional LAPLACIAN Space-fractional reaction diffusion equations NON-HOMOGENEOUS boundary conditions Matrix transfer technique predictor-corrector method
在线阅读 下载PDF
A fractional-order improved FitzHugh–Nagumo neuron model
3
作者 Pushpendra Kumar Vedat Suat Erturk 《Chinese Physics B》 2025年第1期519-528,共10页
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri... We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems. 展开更多
关键词 FitzHugh-Nagumo neuron model generalized Caputo fractional derivative L1 predictor-corrector method STABILITY error estimation
原文传递
Fractional four-step finite element method for analysis of thermally coupled fluid-solid interaction problems 被引量:2
4
作者 A. MALATIP N. WANSOPHARK P. DECHAUMPHAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期99-116,共18页
An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal str... An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena. 展开更多
关键词 fluid-solid interaction finite element method fractional four-step method
在线阅读 下载PDF
Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives
5
作者 Nasser Sweilam Seham Al-Mekhlafi +2 位作者 Aya Ahmed Ahoud Alsheri Emad Abo-Eldahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1619-1645,共27页
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators... In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings. 展开更多
关键词 Cancer diseases hybrid variable-order fractional derivatives adams bashfourth fifth step generalized fifth order Runge-Kutta method
在线阅读 下载PDF
A hybrid method of fractional steps with predictor-corrector difference-pseudospectrum for numerical solution of the convection-dominated flow problems
6
作者 王喜君 张法高 吴江航 《Science China Mathematics》 SCIE 1995年第7期838-852,共15页
A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L2-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathe... A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L2-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test. 展开更多
关键词 convective DOMINATION fractional-step method predictor-corrector method PSEUDOSPECTRAL method.
原文传递
The upwind finite difference fractional steps method for combinatorial system of dynamics of fluids in porous media and its application 被引量:9
7
作者 袁益让 《Science China Mathematics》 SCIE 2002年第5期578-593,共16页
For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-d... For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as implicit-explicit difference scheme, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L 2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. Keywords: combinatorial system, multilayer dynamics of fluids in porous media, two-class upwind finite difference fractional steps method, convergence, numerical simulation of energy sources. 展开更多
关键词 combinatorial system multilayer DYNAMICS of FLUIDS in porous media twoclass UPWIND finite difference fractional steps method convergence numerical simulation of energy sources.
原文传递
AN ANALYTIC METHOD OF FRACTIONAL STEPS FOR THE NUMERICAL SOLUTION TO CONVECTION-DOMINATED PROBLEMS
8
作者 吴江航 孙毓平 《Science China Mathematics》 SCIE 1990年第8期944-954,共11页
An analytic method of fractional steps, which is unconditionally L_∞-stable, is proposed for the numerical solution to convection-dominated problems. In this paper the stability and convergence of the analytic soluti... An analytic method of fractional steps, which is unconditionally L_∞-stable, is proposed for the numerical solution to convection-dominated problems. In this paper the stability and convergence of the analytic solution with fractional steps to both linear and nonlinear problems are proved, and its error estimates are presented. 展开更多
关键词 convection-dominated PROBLEMS method of fractional steps BACKWARD characteristics technique finite ANALYTIC method maximum and minimum principles.
原文传递
The Modified Upwind Finite Difference Fractional Steps Method for Compressible Two-phase Displacement Problem
9
作者 Yi-rangYuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第3期381-396,共16页
For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof differen... For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources. 展开更多
关键词 Two-phase displacement two-dimensional compressibility modified upwind finite difference fractional steps method convergence
原文传递
THE UPWIND FINITE DIFFERENCE FRACTIONAL STEPS METHOD FOR NONLINEAR COUPLED SYSTEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA
10
作者 Yirang YUAN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第4期498-516,共19页
For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod... For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. 展开更多
关键词 Convergence coupled system multilayer dynamics of fluids in porous media nonlinear equations upwind finite difference fractional steps method.
原文传递
适用于高频电力电子电路的分数步长电磁暂态仿真方法
11
作者 吴盼 徐晋 +4 位作者 汪可友 李子润 李国杰 周建其 王宏韬 《中国电机工程学报》 北大核心 2025年第12期4811-4821,I0024,共12页
近年来,以电力电子变压器为典型代表的高频电力电子电路受到广泛关注,其中双有源桥结构的开关频率往往达数十k Hz。针对高频电力电子电路的电磁暂态仿真,采用恒导纳开关模型有助于降低计算量,但仍面临仿真精度和效率上的双重挑战:一是... 近年来,以电力电子变压器为典型代表的高频电力电子电路受到广泛关注,其中双有源桥结构的开关频率往往达数十k Hz。针对高频电力电子电路的电磁暂态仿真,采用恒导纳开关模型有助于降低计算量,但仍面临仿真精度和效率上的双重挑战:一是恒导纳开关模型在高频开关动作下的虚拟损耗严重影响仿真精度;二是仿真所要求纳秒级仿真步长将加重计算负担而影响仿真效率。为此,该文提出分数步长电磁暂态仿真方法,基于改进的高并行电磁暂态仿真程序算法进行离散化建模,并将仿真计算分解为一系列不同分数步长下的小步合成计算过程的叠加,其中小步合成采用“小步建模,大步计算”思想可降低虚拟损耗,而分数步长则用于准确定位开关动作时刻,以支持较大步长下精确仿真。算例分析表明,所提方法可有效提升高频电力电子电路的仿真精度,且能在保证准确性的同时支持其大步长仿真,从而实现离线仿真加速,还有助于提升实时仿真性能。 展开更多
关键词 高频电力电子电路 电磁暂态仿真 恒导纳开关模型 小步合成 分数步仿真方法
原文传递
NUMERICAL METHOD FOR THREE-DIMENSIONAL NONLINEAR CONVECTION-DOMINATED PROBLEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA
12
作者 袁益让 杜宁 +2 位作者 王文洽 程爱杰 韩玉笈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期683-694,共12页
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract... For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects. 展开更多
关键词 nonlinear convection-dominated dynamics of fluids upwind fractional steps finite difference method convergence numerical simulation
在线阅读 下载PDF
FULL DISCRETE NONLINEAR GALERKIN METHOD FOR THE NAVIER-STOKES EQUATIONS 
13
作者 LIKAITAI HEYINNIAN XIANGYIMIN 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1994年第1期11-30,共20页
This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the erro... This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the error estimates of the approximate solutions of the Navier-Stokes Equations. 展开更多
关键词 Full Discrete Nonlinear Galerkin method fractional step method Approximate Inertial Manifold Navier-Stokes Equations.AMS Subject Classification.65N30 65M60.
在线阅读 下载PDF
Study on the wind field and pollutant dispersion in street canyons using a stable numerical method
14
作者 Dennis Y.C. LEUNG 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期488-490,共3页
A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the ve... A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin(SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity. 展开更多
关键词 finite element method Streamline Upwind Petrov-Galerkin method three-step fractional method
在线阅读 下载PDF
基于IECSDE算法的PEMFC改进分数阶子空间辨识模型
15
作者 秦灏 戚志东 +1 位作者 于灵芝 童新 《计算机工程》 CAS CSCD 北大核心 2024年第6期346-357,共12页
为准确描述质子交换膜燃料电池(PEMFC)在其发电过程中的特性及变量影响关系,提出一种基于信息交流布谷鸟搜索差分进化(IECSDE)算法的改进分数阶子空间辨识方法来建立PEMFC分数阶模型。首先基于状态空间方程建立PEMFC模型,为了描述PEMFC... 为准确描述质子交换膜燃料电池(PEMFC)在其发电过程中的特性及变量影响关系,提出一种基于信息交流布谷鸟搜索差分进化(IECSDE)算法的改进分数阶子空间辨识方法来建立PEMFC分数阶模型。首先基于状态空间方程建立PEMFC模型,为了描述PEMFC的分数阶特性,将分数阶微分理论融入到模型中,引入Poisson滤波函数预处理实验数据,解决数据多阶不可导的问题,同时引入变步长记忆法处理分数阶微分时的权系数,提高子空间辨识精度。其次在辨识过程中的参数对于建模效果具有重大影响,因此基于IECSDE算法并对其进行优化,对布谷鸟搜索(CS)算法中的控制参数进行自适应处理,受到粒子群优化(PSO)算法的启发,改进随机游走方式提高收敛精度和速度,并引入差分进化(DE)算法与改进CS算法分别对种群进行优化,同时在寻优过程中进行信息交流提高种群的多样性和算法的鲁棒性。仿真结果表明,IECSDE算法的寻优能力在8种测试函数下比其他5种优化算法至少提升了10倍;通过对PEMFC测控平台收集到的实验数据进行模型辨识,所建立的模型将误差缩小到基于短记忆法的分数阶子空间辨识方法误差的20%,输出功率误差控制在0~0.1之间,输出电压误差控制在0~0.2之间,能够精准地模拟PEMFC发电过程。 展开更多
关键词 质子交换膜燃料电池 分数阶子空间辨识 变步长记忆法 优化算法 信息交流
在线阅读 下载PDF
“解释法”样例对小学生学习新运算规则的促进 被引量:15
16
作者 张奇 郑伟 万莹 《心理发展与教育》 CSSCI 北大核心 2014年第2期153-159,共7页
为证实"解释法"样例设计的促进作用,实验考察了4年级小学生学习"解释"样例与普通样例、"解释"样例和"解释-标记"与普通样例的迁移效果。结果表明:(1)用"解释"样例学习分数加减运算... 为证实"解释法"样例设计的促进作用,实验考察了4年级小学生学习"解释"样例与普通样例、"解释"样例和"解释-标记"与普通样例的迁移效果。结果表明:(1)用"解释"样例学习分数加减运算规则的近迁移成绩明显优于普通样例,但远迁移成绩无显著差异;(2)用"解释-标记"样例学习分数乘除法运算规则的远迁移成绩明显优于"解释"样例和普通样例,但近迁移成绩差异不显著,学习"解释"样例的远迁移效果均明显优于普通样例;(3)学习"解释法"设计的比例运算样例,其远、近迁移成绩均明显优于普通样例的迁移成绩,并受被试先备知识的影响。 展开更多
关键词 分数运算 比例运算 解释法 样例学习 关键步骤
原文传递
不可压流体自由表面流动的SPH数值模拟 被引量:20
17
作者 李梅娥 周进雄 《机械工程学报》 EI CAS CSCD 北大核心 2004年第3期5-9,共5页
根据SPH方法的原理提出了一套模拟流体自由表面流动的方法,场变量及其导数通过核函数插值求取,不需进行差分,也不需要网格,时间积分采用分数步长法,避免了不可压条件带来的压力计算不稳定问题。对流项通过粒子的运动求解,完全消除了数... 根据SPH方法的原理提出了一套模拟流体自由表面流动的方法,场变量及其导数通过核函数插值求取,不需进行差分,也不需要网格,时间积分采用分数步长法,避免了不可压条件带来的压力计算不稳定问题。对流项通过粒子的运动求解,完全消除了数值扩散和自由表面模糊问题。可以模拟飞溅、融合等复杂自由表面现象,并对水坝坍塌这一典型自由表面流动问题进行了模拟,模拟结果与试验吻合良好。 展开更多
关键词 不可压流体流动 自由表面 光滑质点流体动力学 分数步长法 数值模拟
在线阅读 下载PDF
无硫膨胀石墨的制备及微观组织分析 被引量:8
18
作者 王振廷 殷力佳 王洋 《非金属矿》 CAS CSCD 北大核心 2013年第5期36-38,共3页
针对传统方法制得的膨胀石墨含硫量高的问题,以有机酸乙酸为插层剂,氯酸钾和硝酸为氧化剂,0.18mm天然鳞片石墨为原料,采用先氧化后插层的分步法制备了无硫膨胀石墨。研究了制备过程中不同因素对膨胀体积的影响,并对膨胀石墨的微观组织... 针对传统方法制得的膨胀石墨含硫量高的问题,以有机酸乙酸为插层剂,氯酸钾和硝酸为氧化剂,0.18mm天然鳞片石墨为原料,采用先氧化后插层的分步法制备了无硫膨胀石墨。研究了制备过程中不同因素对膨胀体积的影响,并对膨胀石墨的微观组织结构进行了初步分析。确定最佳工艺条件为:m(石墨)∶V(CH3COOH)∶V(HNO3)∶m(KClO3)为1(g)∶2(mL)∶1.8(mL)∶0.8(g),氧化反应和插层反应时间各30 min,反应温度45℃。膨胀石墨膨胀体积达325 mL/g。 展开更多
关键词 膨胀石墨 分步法 膨胀体积 乙酸
在线阅读 下载PDF
分数阶系统状态空间描述的数值算法 被引量:4
19
作者 王振滨 曹广益 朱新坚 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第1期101-105,109,共6页
利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法... 利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求.给出并证明了分数阶微积分的高阶近似所应满足的条件,并在此基础上推导出分数阶线性定常系统状态空间描述的数值计算公式.本法不但公式简单易编程,而且具有计算精度高、运算速度快等优点.给出一个粘弹性动态系统的仿真实例,验证了其有效性. 展开更多
关键词 分数微积分 分数阶系统 分数阶线性多步长方法 状态空间描述
在线阅读 下载PDF
分数阶Fourier变换极值搜索算法研究 被引量:7
20
作者 卫红凯 王平波 +1 位作者 蔡志明 姚万军 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2949-2952,共4页
针对步进式搜索算法在分数阶Fourier变换域二维平面效率、精度低下的问题,通过推导分数阶Fourier域极值函数的一阶导数及其快速算法,将全局寻优效果好的混沌优化法和局部搜索能力强的多步拟牛顿法相结合,提出了分数阶Fourier变换极值混... 针对步进式搜索算法在分数阶Fourier变换域二维平面效率、精度低下的问题,通过推导分数阶Fourier域极值函数的一阶导数及其快速算法,将全局寻优效果好的混沌优化法和局部搜索能力强的多步拟牛顿法相结合,提出了分数阶Fourier变换极值混合优化算法.并对混合算法的全局收敛性进行了证明.最后,通过仿真实例,验证了混合算法的全局收敛性及其快速收敛能力.混合优化算法的收敛速度和精度均好于步进式搜索法、混沌优化法及步进式-多步拟牛顿混合法. 展开更多
关键词 分数阶FOURIER变换 混沌优化 多步拟牛顿法 线性调频信号
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部