In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla...Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin...Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.展开更多
The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, althoug...The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, although the result itself achieved in the present paper is interesting, the new technique and method should be emphasized. These novel ideas might be useful to establish the box dimension or Hausdorff dimension (especially for the lower bounds) for more general groups of functions.展开更多
Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scalin...Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.展开更多
Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any contin...Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.展开更多
Objective:To explore the differences in the central response after acupuncture and moxibusbution at Zusanli(足三里ST36) in treatment of functional dyspepsia(FD) based on the analysis of fractional amplitude of low fre...Objective:To explore the differences in the central response after acupuncture and moxibusbution at Zusanli(足三里ST36) in treatment of functional dyspepsia(FD) based on the analysis of fractional amplitude of low frequency fluctuation(fALFF) of resting-state functional magnetic resonance imaging(rfMRI).Methods:A total of 60 patients with FD were randomized into an acupuncture group and a moxibustion group,30 cases in each one.In the acupuncture group,acupuncture was applied to bilateral ST36.In the moxibustion group,moxibustion was exerted at bilateral ST36.The treatment was given once a day,5 times a week,totally for 4 weeks in each group,including 20 treatments with acupuncture or moxibustion.Separately,before and at the end of treatment,rfMRI scanning was conducted in two groups.Using data processing assistant for resting-state fMRI(DPARSF) software and MATLAB data platform,rfMRI data were collected for preprocessing and fALFF analysis.Results:Compared with the data before treatment,after treated with acupuncture at ST36 in FD patients,fALFF value was reduced in the right superior frontal gyrus,left superior frontal gyrus,left inferior frontal gyrus,right cuneus,left precuneus,right middle occipital gyrus,left middle occipital gyrus,etc.,and it was increased in the left parahippocampus,right parahippocampus,left cerebellum,etc(all P <0.01).After treated with moxibustion,the remarkable increase of fALFF was not discovered in brain areas,but fALFF decreased significantly in the left superior parietal gyrus(P <0.01).Compared with moxibustion at ST36,after acupuncture at ST36 in FD patients,the increase of fALFF appeared in the right putamen and the decrease of it occurred in the middle occipital gyrus,indicating the statistical significance(both P <0.05).Conclusion:The differences in central function responses are induced in treamtent with acupuncture and moxibustion,which is probably related to the resting-state default network associated with targeted regulation and ventral attention of brain areas in functional dyspepsia.展开更多
In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.
In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded...In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.展开更多
In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo'...In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.展开更多
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv...This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inc...Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inclusion relations, coefficient bound for this class. Moreover, we discuss some geometric properties of the fractional differential operator.展开更多
In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved ...In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.展开更多
This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo(ABC)sense.Unlike traditional ...This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo(ABC)sense.Unlike traditional epidemiological models that rely on classical or Caputo fractional derivatives,the proposed model incorporates nonlocal memory effects,hereditary properties,and complex transmission dynamics through fractalfractional calculus.The Atangana-Baleanu operator,with its non-singular Mittag-Leffler kernel,ensures a more realistic representation of disease progression compared to classical integer-order models and singular kernel-based fractional models.The study establishes the existence and uniqueness of the proposed system and conducts a comprehensive stability analysis,including local and global stability.Furthermore,numerical simulations illustrate the effectiveness of the ABC operator in capturing long-memory effects and nonlocal interactions in disease transmission.The results provide valuable insights into public health interventions,particularly in optimizing vaccination strategies,treatment approaches,and mitigation measures.By extending epidemiological modeling through fractal-fractional derivatives,this study offers an advanced framework for analyzing infectious disease dynamics with enhanced accuracy and predictive capabilities.展开更多
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
文摘Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
基金the Key Research Base for Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statistics of Zhejiang Gongshang University)the Natural ScienceFoundation of Shaanxi Province(2005A08,2006A14)
文摘Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.
文摘The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, although the result itself achieved in the present paper is interesting, the new technique and method should be emphasized. These novel ideas might be useful to establish the box dimension or Hausdorff dimension (especially for the lower bounds) for more general groups of functions.
基金National Natural Science Foundation of Zhejiang Province
文摘Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
基金Project supported by the National Natural Science Foundation of China(Grant No.11371049)the Science Foundation of Beijing Jiaotong University(Grant Nos.2011JBM130 and 2011YJS076)
文摘Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
文摘Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.
基金Supported by Changsha Outstanding Innovation Youth Training Project:kq1905036Open Fund Project of First-Class Discipline in Traditional Chinese Medicine of Hunan University of Chinese Medicine:2018ZYX04。
文摘Objective:To explore the differences in the central response after acupuncture and moxibusbution at Zusanli(足三里ST36) in treatment of functional dyspepsia(FD) based on the analysis of fractional amplitude of low frequency fluctuation(fALFF) of resting-state functional magnetic resonance imaging(rfMRI).Methods:A total of 60 patients with FD were randomized into an acupuncture group and a moxibustion group,30 cases in each one.In the acupuncture group,acupuncture was applied to bilateral ST36.In the moxibustion group,moxibustion was exerted at bilateral ST36.The treatment was given once a day,5 times a week,totally for 4 weeks in each group,including 20 treatments with acupuncture or moxibustion.Separately,before and at the end of treatment,rfMRI scanning was conducted in two groups.Using data processing assistant for resting-state fMRI(DPARSF) software and MATLAB data platform,rfMRI data were collected for preprocessing and fALFF analysis.Results:Compared with the data before treatment,after treated with acupuncture at ST36 in FD patients,fALFF value was reduced in the right superior frontal gyrus,left superior frontal gyrus,left inferior frontal gyrus,right cuneus,left precuneus,right middle occipital gyrus,left middle occipital gyrus,etc.,and it was increased in the left parahippocampus,right parahippocampus,left cerebellum,etc(all P <0.01).After treated with moxibustion,the remarkable increase of fALFF was not discovered in brain areas,but fALFF decreased significantly in the left superior parietal gyrus(P <0.01).Compared with moxibustion at ST36,after acupuncture at ST36 in FD patients,the increase of fALFF appeared in the right putamen and the decrease of it occurred in the middle occipital gyrus,indicating the statistical significance(both P <0.05).Conclusion:The differences in central function responses are induced in treamtent with acupuncture and moxibustion,which is probably related to the resting-state default network associated with targeted regulation and ventral attention of brain areas in functional dyspepsia.
文摘In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.
基金Supported in part by the Natural Science Foundation of China under the Grant 10771221Natural Science Foundation of Beijing under the Grant 1092004
文摘In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.
文摘In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.
文摘This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
文摘Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inclusion relations, coefficient bound for this class. Moreover, we discuss some geometric properties of the fractional differential operator.
文摘In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.
基金funded by the Research,Development,and Innovation Authority(RDIA)-Kingdom of Saudi Arabia-with grant number 12803-baha-2023-BU-R-3-1-EI.
文摘This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo(ABC)sense.Unlike traditional epidemiological models that rely on classical or Caputo fractional derivatives,the proposed model incorporates nonlocal memory effects,hereditary properties,and complex transmission dynamics through fractalfractional calculus.The Atangana-Baleanu operator,with its non-singular Mittag-Leffler kernel,ensures a more realistic representation of disease progression compared to classical integer-order models and singular kernel-based fractional models.The study establishes the existence and uniqueness of the proposed system and conducts a comprehensive stability analysis,including local and global stability.Furthermore,numerical simulations illustrate the effectiveness of the ABC operator in capturing long-memory effects and nonlocal interactions in disease transmission.The results provide valuable insights into public health interventions,particularly in optimizing vaccination strategies,treatment approaches,and mitigation measures.By extending epidemiological modeling through fractal-fractional derivatives,this study offers an advanced framework for analyzing infectious disease dynamics with enhanced accuracy and predictive capabilities.