This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it i...This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .展开更多
In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main ...In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.展开更多
Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surfa...Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surface topography. The results show that when the characteristic length scale of the surface, G, is larger than 1 × 10^(-7), the surface roughness increases with the increasing fractal dimension D. When the surface roughness becomes larger, it is difficult for entered electrons to escape surface. As a result, more electrons are collected and then SEY decreases. When G is less than 1 × 10^(-7),the effect of the surface topography can be ignored, and the SEY almost has no change as the dimension D increases. Then,the multipactor thresholds of a C-band rectangular impedance transfer and an ultrahigh-frequency-band coaxial impedance transfer are predicted by the relationship between the SEY and the fractal parameters. It is verified that for practical microwave devices, the larger the parameter G is, the higher the multipactor threshold is. Also, the larger the value of D,the higher the multipactor threshold.展开更多
Given the scientific progresses as well as the invention of new methods in exploration, it is necessary to conduct some re-investigations in several exploration zones. So, in the present research, geochemical data on ...Given the scientific progresses as well as the invention of new methods in exploration, it is necessary to conduct some re-investigations in several exploration zones. So, in the present research, geochemical data on Tanurjeh exploration zone, (located in Northern Neishaboor, Khorasane Razavi province) is studied by using some modern statistical methods. Fractal methods are appropriated to study and separate the grades societies in deposits. In this article, litho-geochemical analysis results (ICP) are processed by concentration area fractal method (CA). The distribution diagrams related to the statistical populations are drawn, and anomaly populations of Copper, Gold and Molybdenum are determined besides previous studies (petrography and alteration), the results of statistic methods (CA) and aid presence of the porphyry system in depth.展开更多
Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to deline...Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.展开更多
To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based...To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.展开更多
Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This ...Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This paper proposes a successive shift box-counting method,in which the studied object is divided into small sub-objects that are composed of a series of gridsaccording to its characteristic scaling. The terrain fractal dimensions in the grids are calculatedwith the successive shift box-counting method and the scattered points with values of fractaldimensions are obtained. The present research shows that the planar variation of fractal dimensionsis well consistent with fault traces and geological boundaries.展开更多
This article proposes a new approach based on linear programming optimization to solve the problem of determining the color of a complex fractal carpet pattern.The principle is aimed at finding suitable dyes for mixin...This article proposes a new approach based on linear programming optimization to solve the problem of determining the color of a complex fractal carpet pattern.The principle is aimed at finding suitable dyes for mixing and their exact concentrations,which,when applied correctly,gives the desired color.The objective function and all constraints of the model are expressed linearly according to the solution variables.Carpet design has become an emerging technological field known for its creativity,science and technology.Many carpet design concepts have been analyzed in terms of color,contrast,brightness,as well as other mathematical concepts such as geometric changes and formulas.These concepts represent a common process in the carpet industry.This article discusses the use of complex fractal images in carpet design and simplex optimization in color selection.展开更多
The Salmas geothermal field is located in NW Iran. Subduction of Neo-Tethys oceanic crust beneath the Iranian microcontinent caused to propagation of the magmatic-Arc. Fractures and faults in the convergent zone have ...The Salmas geothermal field is located in NW Iran. Subduction of Neo-Tethys oceanic crust beneath the Iranian microcontinent caused to propagation of the magmatic-Arc. Fractures and faults in the convergent zone have created path-ways for the circulation of geothermal fluid. Fracture concentration in the Salmas geothermal field has been characterized using of the fractal method and creation of a fracture density map that shows the highest concentration in the central part of the study area. The permeability of fractures has been evaluated by analyzing their orientation in respect to the paleostress axes. Also, the fractal analyzing result indicates the maximum fractal dimension(1.96) is around the thermal spring outlet. Paleostress analyzing revealed that in the central part of the study area, σ1 axes orientation is S90°W/10° and the σ2 dip is near to the vertical in this stress field, where strike slip faults can be propagated. In the SE part near the recharge of the thermal springs, the σ3 plunge increases to 70? and σ1 orientation is N15°E/20°, in this local tectonic regime thrust fault developed. Fractures have an important role in the circulation of fluid and the fractal dimension increases near the thermal springs in the Salmas geothermal field. Regarding the paleostress data fracture with N-S direction such as the F1 fault zone(parallel to the σ1 axes), a suitable pathway for deep circulation of geothermal fluid flow has been created.展开更多
This paper studied the rock dynamic fracture propagation under impact loads elaborately with a determination method proposed to calculate crack propagation dynamic stress intensity factor(DSIF).By utilizing the split-...This paper studied the rock dynamic fracture propagation under impact loads elaborately with a determination method proposed to calculate crack propagation dynamic stress intensity factor(DSIF).By utilizing the split-Hopkinson pressure bar,the impact experiments with an improved single cleavage semi-circle(ISCSC)specimen were conducted to illuminate the dynamic crack propagation behaviour.Meanwhile,the fracture characteristics and crack propagation velocity were obtained by the crack propagation gauges.Coordinating experiments with a numerical approach,the crack propagation dynamic stress intensity factors were calculated by an experimental—numerical method with fractal theory.Then,a finite difference model was developed based on the tensile fracture softening damage criterion.With the analysis of numerical and experimental results,the crack propagation behaviour and mechanism of crack arrest were discussed sophisticatedly.The results demonstrate that the novel ISCSC specimen shows a definite advantage in determining crack propagation and arrest DSIF.Additionally,the crack arrest DSIF is larger than the average propagation DSIF with a sharp increase.Meanwhile,the numerical simulation results which agree well with the actual crack propagation illustrate that the crack arrest should be dominated by the compressive stress perpendicular to the crack path,and there were several arrest pauses existing in the transitory crack arrest process.展开更多
Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by t...Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by the detection of neutrons.The capability to discriminate neutrons from gamma rays is important for evaluating plastic scintillator neutron detectors because similar pulse shapes are generated from both forms of radiation in the detection system.The pulse signals measured by plastic scintillators contain noise,which decreases the accuracy of n-y discrimination.To improve the performance of n-y discrimination,the noise of the pulse signals should be filtered before the n-y discrimination process.In this study,the influences of the Fourier transform,wavelet transform,moving-average filter,and Kalman algorithm on the charge comparison method,fractal spectrum method,and back-propagation neural network methods were studied.It was found that the Fourier transform filtering algorithm exhibits better adaptability to the charge comparison method than others,with an increasing accuracy of 6.87%compared to that without the filtering process.Meanwhile,the Kalman filter offers an improvement of 3.04%over the fractal spectrum method,and the adaptability of the moving-average filter in backpropagation neural network discrimination is better than that in other methods,with an increase in 8.48%.The Kalman filtering algorithm has a significant impact on the peak value of the pulse,reaching 4.49%,and it has an insignificant impact on the energy resolution of the spectrum measurement after discrimination.展开更多
Major and REE geochemistry and multi-fractal analysis of two types of bauxite(primary bauxite and accumulated bauxite) ores were studied in Pingguo bauxite orefield in western Guangxi,China.The results of geochemical ...Major and REE geochemistry and multi-fractal analysis of two types of bauxite(primary bauxite and accumulated bauxite) ores were studied in Pingguo bauxite orefield in western Guangxi,China.The results of geochemical data show that the accumulated bauxite has a feature of high Al_2O_3 whereas relative low Fe_2O_3 and SiO_2 contents compared to the primary bauxite.The similar chondrite-normalized rare earth element(REE) patterns illustrate that they have a cognate relationship.However,the negative Ce anomalies of primary bauxite and positive Ce anomalies of accumulated bauxite indicate that the ore-forming system changed from reducing environment to oxidation environment.The results of multi-fractal spectrum and parameters of Al_2O_3,Fe_2O_3 and SiO_2 between primary bauxite and accumulated bauxite show that the distinct multi-fractal spectrum parameters reflect the different grade distribution between accumulated and primary bauxite ores.Metallogenic process from primary bauxite to accumulated bauxite is accompanied by the loss of diffluent elements(e.g.,Si and S) and enrichment of stable elements(e.g.,Al and Fe) in the surface environment.Among the rest,the migration mechanism of iron during the evolutionary process from primary ore to accumulated ore can be described as combined leaching and chemical weathering action with participation of sulfur.展开更多
This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-...This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-cell (FLHC), is abstracted from the micro/nano-structure of ligaments and tendons (LTs). Its constitutive operator is derived by the Heaviside operational calculus, which is of intrinsic fractional order. In terms of this operator, the long-term viscoelastic relaxation of bio-fibres arising from the fractal ladder topology is expounded. In addition, the fractional-order viscoelastic constitutive equation is obtained based on the FLHC of LTs, and its results are consistent with those of available human knee and spinal LT relaxation experiments. Results on the constitutive equation of FLHCs are formulated into two propositions. The multidisciplinary invariance and implications from the fractal ladder pattern of bio-fibres are also discussed.展开更多
Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimen...Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimensions (fractal dimensions) are non-integer values. Fractal geometry was conceived in the 1970s, and mainly developed by Benoit Mandelbrot. In fractal geometry fractals are normally the results of an iterative or recursive construction using corresponding algorithm. Fractal analysis is a nontraditional mathematical and experimental method derived from Mandelbrot’s Fractal Geometry of Nature, Euclidean geometry and calculus. The main aims of the present study are: 1) to address the dimensional imbalances in some texts on fractal geometry, proving that logarithm of a physical quantity (e.g. length of a segment) is senseless;2) to define the modified capacity dimension, calculate its value for Koch fractal set and show that such definition satisfies basic demands of physics, before all the dimensional balance;and 3) to calculate theoretically the fractal dimension of a circle of unit radius. A quantitative determination of the similarity using the set of Koch fractals is carried out. An important result is the relationship between the modified capacity dimension and fractal dimension obtained using the log-log method. The text includes some important modifications and advances in fractal theory. It is important to notice that these modifications and quantifications do not affect already known facts in fractal geometry and fractal analysis.展开更多
文摘This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .
文摘In this study,geochemical anomaly separation was carried out with methods based on the distribution model,which includes probability diagram(MPD),fractal(concentration-area technique),and U-statistic methods.The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization.For this purpose,samples were taken from the secondary lithogeochemical environment(stream sediment samples)on the gold mineralization in Saqqez,NW of Iran.Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization.The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element.The spatial analysis showed two mixed subpopulations after U=0 and another subpopulation with very high U values.The MPD analysis followed spatial analysis,which shows the detail of the variations.Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above.The MPD method was able to identify the anomalous areas higher than 90%,whereas the two other methods identified 60%(maximum)of the anomalous areas.The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values.Therefore,the MPD method is more robust than the other methods.The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area.MPD is recommended as the best,and the spatial U-analysis is the next reliable method to be used.The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211 and 61901361)。
文摘Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surface topography. The results show that when the characteristic length scale of the surface, G, is larger than 1 × 10^(-7), the surface roughness increases with the increasing fractal dimension D. When the surface roughness becomes larger, it is difficult for entered electrons to escape surface. As a result, more electrons are collected and then SEY decreases. When G is less than 1 × 10^(-7),the effect of the surface topography can be ignored, and the SEY almost has no change as the dimension D increases. Then,the multipactor thresholds of a C-band rectangular impedance transfer and an ultrahigh-frequency-band coaxial impedance transfer are predicted by the relationship between the SEY and the fractal parameters. It is verified that for practical microwave devices, the larger the parameter G is, the higher the multipactor threshold is. Also, the larger the value of D,the higher the multipactor threshold.
文摘Given the scientific progresses as well as the invention of new methods in exploration, it is necessary to conduct some re-investigations in several exploration zones. So, in the present research, geochemical data on Tanurjeh exploration zone, (located in Northern Neishaboor, Khorasane Razavi province) is studied by using some modern statistical methods. Fractal methods are appropriated to study and separate the grades societies in deposits. In this article, litho-geochemical analysis results (ICP) are processed by concentration area fractal method (CA). The distribution diagrams related to the statistical populations are drawn, and anomaly populations of Copper, Gold and Molybdenum are determined besides previous studies (petrography and alteration), the results of statistic methods (CA) and aid presence of the porphyry system in depth.
基金supported by the fund"Metallogenic Geodynamic Background,Process and Quantitative Evaluation of Super Large Fe-Cu Polymetallic Deposits,Qinghai Qimantag Area"(Grant No.1212011220929)from Beijing Key Laboratory of Land Resources Information Research and Development,China University of Geosciences,Beijing
文摘Fractal and multi-fractal content area method finds application in a wide variety of geological,geochemical and geophysical fields.In this study,the fractal content-gradient method was used on1:10,000 scale to delineate geochemical anomalies associated with copper mineralization.Analysis of geochemical data from the Yangla super large Cu-Pb-Zn polymetallic ore district using the fractal content-gradient method,combined with other geological data from this area,indicates that oreprospecting in the ore district should focus on Cu as the main metal and Pb-Zn and Au as the auxiliary metals.The types of deposits include(in chronological order) re-formed sedimentary exhalative(SEDEX),skarns,porphyries,and hydrothermal vein-type deposits.Three ore-prospecting targets are divided on a S-N basis:(1) the Qulong exploration area,in which the targets are porphyry-type Cu deposits;(2) the Zongya exploration area,where the targets are porphyry-type Cu and hydrothermal vein-type Cu-Pb polymetallic deposits;and(3) the Zarelongma exploration area,characterized mainly skarn-type "Yangla-style" massive sulfide Cu-Pb deposits.Our study demonstrates that the fractal content-gradient method is convenient,simple,rapid,and direct for delineating geochemical anomalies and for outlining potential exploration targets.
基金funded by the National Key Research and Development ProgramFund for Young Scientists(No.2021YFC2900400)+5 种基金the National Natural Science Foundation of China(No.52304123)Fundamental Research Funds for the Central Universities(No.2024CDJXY025)Sichuan-Chongqing Science and Technology Innovation Cooperation Program Project(No.CSTB2024TIAD-CYKJCXX0016)Postdoctoral Research Foundation of China(No.2023M730412)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZB20230914)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027)。
文摘To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.
文摘Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This paper proposes a successive shift box-counting method,in which the studied object is divided into small sub-objects that are composed of a series of gridsaccording to its characteristic scaling. The terrain fractal dimensions in the grids are calculatedwith the successive shift box-counting method and the scattered points with values of fractaldimensions are obtained. The present research shows that the planar variation of fractal dimensionsis well consistent with fault traces and geological boundaries.
文摘This article proposes a new approach based on linear programming optimization to solve the problem of determining the color of a complex fractal carpet pattern.The principle is aimed at finding suitable dyes for mixing and their exact concentrations,which,when applied correctly,gives the desired color.The objective function and all constraints of the model are expressed linearly according to the solution variables.Carpet design has become an emerging technological field known for its creativity,science and technology.Many carpet design concepts have been analyzed in terms of color,contrast,brightness,as well as other mathematical concepts such as geometric changes and formulas.These concepts represent a common process in the carpet industry.This article discusses the use of complex fractal images in carpet design and simplex optimization in color selection.
基金supported financially by Urmia Universitythe Renewable Energy Department of the Niroo Research Institute(NRI)
文摘The Salmas geothermal field is located in NW Iran. Subduction of Neo-Tethys oceanic crust beneath the Iranian microcontinent caused to propagation of the magmatic-Arc. Fractures and faults in the convergent zone have created path-ways for the circulation of geothermal fluid. Fracture concentration in the Salmas geothermal field has been characterized using of the fractal method and creation of a fracture density map that shows the highest concentration in the central part of the study area. The permeability of fractures has been evaluated by analyzing their orientation in respect to the paleostress axes. Also, the fractal analyzing result indicates the maximum fractal dimension(1.96) is around the thermal spring outlet. Paleostress analyzing revealed that in the central part of the study area, σ1 axes orientation is S90°W/10° and the σ2 dip is near to the vertical in this stress field, where strike slip faults can be propagated. In the SE part near the recharge of the thermal springs, the σ3 plunge increases to 70? and σ1 orientation is N15°E/20°, in this local tectonic regime thrust fault developed. Fractures have an important role in the circulation of fluid and the fractal dimension increases near the thermal springs in the Salmas geothermal field. Regarding the paleostress data fracture with N-S direction such as the F1 fault zone(parallel to the σ1 axes), a suitable pathway for deep circulation of geothermal fluid flow has been created.
基金the National Natural Science Foundation of China(Grant Nurmbers 11702181,11672194)the Sichuan Science and Technology Program(Grant Numbers 2019YFG0047).
文摘This paper studied the rock dynamic fracture propagation under impact loads elaborately with a determination method proposed to calculate crack propagation dynamic stress intensity factor(DSIF).By utilizing the split-Hopkinson pressure bar,the impact experiments with an improved single cleavage semi-circle(ISCSC)specimen were conducted to illuminate the dynamic crack propagation behaviour.Meanwhile,the fracture characteristics and crack propagation velocity were obtained by the crack propagation gauges.Coordinating experiments with a numerical approach,the crack propagation dynamic stress intensity factors were calculated by an experimental—numerical method with fractal theory.Then,a finite difference model was developed based on the tensile fracture softening damage criterion.With the analysis of numerical and experimental results,the crack propagation behaviour and mechanism of crack arrest were discussed sophisticatedly.The results demonstrate that the novel ISCSC specimen shows a definite advantage in determining crack propagation and arrest DSIF.Additionally,the crack arrest DSIF is larger than the average propagation DSIF with a sharp increase.Meanwhile,the numerical simulation results which agree well with the actual crack propagation illustrate that the crack arrest should be dominated by the compressive stress perpendicular to the crack path,and there were several arrest pauses existing in the transitory crack arrest process.
基金supported by the Key Natural Science Projects of the Sichuan Education Department(No.18ZA0067)the Key Science and Technology Projects of Leshan(No.19SZD117)。
文摘Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by the detection of neutrons.The capability to discriminate neutrons from gamma rays is important for evaluating plastic scintillator neutron detectors because similar pulse shapes are generated from both forms of radiation in the detection system.The pulse signals measured by plastic scintillators contain noise,which decreases the accuracy of n-y discrimination.To improve the performance of n-y discrimination,the noise of the pulse signals should be filtered before the n-y discrimination process.In this study,the influences of the Fourier transform,wavelet transform,moving-average filter,and Kalman algorithm on the charge comparison method,fractal spectrum method,and back-propagation neural network methods were studied.It was found that the Fourier transform filtering algorithm exhibits better adaptability to the charge comparison method than others,with an increasing accuracy of 6.87%compared to that without the filtering process.Meanwhile,the Kalman filter offers an improvement of 3.04%over the fractal spectrum method,and the adaptability of the moving-average filter in backpropagation neural network discrimination is better than that in other methods,with an increase in 8.48%.The Kalman filtering algorithm has a significant impact on the peak value of the pulse,reaching 4.49%,and it has an insignificant impact on the energy resolution of the spectrum measurement after discrimination.
基金Project(GX2007CAQB01)supported by the Key Research Project of Aluminum Corporation of China LimitedProject(41502067)supported by the National Natural Science Foundation of China
文摘Major and REE geochemistry and multi-fractal analysis of two types of bauxite(primary bauxite and accumulated bauxite) ores were studied in Pingguo bauxite orefield in western Guangxi,China.The results of geochemical data show that the accumulated bauxite has a feature of high Al_2O_3 whereas relative low Fe_2O_3 and SiO_2 contents compared to the primary bauxite.The similar chondrite-normalized rare earth element(REE) patterns illustrate that they have a cognate relationship.However,the negative Ce anomalies of primary bauxite and positive Ce anomalies of accumulated bauxite indicate that the ore-forming system changed from reducing environment to oxidation environment.The results of multi-fractal spectrum and parameters of Al_2O_3,Fe_2O_3 and SiO_2 between primary bauxite and accumulated bauxite show that the distinct multi-fractal spectrum parameters reflect the different grade distribution between accumulated and primary bauxite ores.Metallogenic process from primary bauxite to accumulated bauxite is accompanied by the loss of diffluent elements(e.g.,Si and S) and enrichment of stable elements(e.g.,Al and Fe) in the surface environment.Among the rest,the migration mechanism of iron during the evolutionary process from primary ore to accumulated ore can be described as combined leaching and chemical weathering action with participation of sulfur.
基金Project(2004CB619205)supported by the National Basic Research Program of ChinaProject(50574099)supported by the National Natural Science Foundation of ChinaProject(06B052)supported by the Scientific Research Fund of Hunan Provincial Education Department of China
基金Project supported by the National Natural Science Foundation of China(No.11672150)the Beijing Nova Program Interdisciplinary Cooperation Project(No.xxjc201705)+1 种基金the Capital Clinical Special Promotion Project(No.Z161100000516233)the Key Issue of the 12th Five-Year Plan of People’s Liberation Army of China(No.BKJ13J004)
文摘This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-cell (FLHC), is abstracted from the micro/nano-structure of ligaments and tendons (LTs). Its constitutive operator is derived by the Heaviside operational calculus, which is of intrinsic fractional order. In terms of this operator, the long-term viscoelastic relaxation of bio-fibres arising from the fractal ladder topology is expounded. In addition, the fractional-order viscoelastic constitutive equation is obtained based on the FLHC of LTs, and its results are consistent with those of available human knee and spinal LT relaxation experiments. Results on the constitutive equation of FLHCs are formulated into two propositions. The multidisciplinary invariance and implications from the fractal ladder pattern of bio-fibres are also discussed.
文摘Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimensions (fractal dimensions) are non-integer values. Fractal geometry was conceived in the 1970s, and mainly developed by Benoit Mandelbrot. In fractal geometry fractals are normally the results of an iterative or recursive construction using corresponding algorithm. Fractal analysis is a nontraditional mathematical and experimental method derived from Mandelbrot’s Fractal Geometry of Nature, Euclidean geometry and calculus. The main aims of the present study are: 1) to address the dimensional imbalances in some texts on fractal geometry, proving that logarithm of a physical quantity (e.g. length of a segment) is senseless;2) to define the modified capacity dimension, calculate its value for Koch fractal set and show that such definition satisfies basic demands of physics, before all the dimensional balance;and 3) to calculate theoretically the fractal dimension of a circle of unit radius. A quantitative determination of the similarity using the set of Koch fractals is carried out. An important result is the relationship between the modified capacity dimension and fractal dimension obtained using the log-log method. The text includes some important modifications and advances in fractal theory. It is important to notice that these modifications and quantifications do not affect already known facts in fractal geometry and fractal analysis.