In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the sol...In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the solutions of (1 .1 ) for case p≠0. These results improve sveral well-known results.展开更多
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approxi...A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.展开更多
The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real ti...The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.展开更多
In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574...In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.展开更多
In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive...In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.展开更多
This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some...This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.展开更多
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved dire...In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.展开更多
This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem ha...This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.展开更多
In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> ...In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>展开更多
In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order sp...In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.展开更多
In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream fun...In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.展开更多
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimens...An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached condition...In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.展开更多
A mathematical model comprising of nonlinear reaction, diffusion, and convection mechanisms seen in natural and anthropogenic processes is numerically investigated here. It is proposed that a higher order numerical sc...A mathematical model comprising of nonlinear reaction, diffusion, and convection mechanisms seen in natural and anthropogenic processes is numerically investigated here. It is proposed that a higher order numerical scheme of finite difference method be used in conjunction with an iterative approach in order to solve the nonlinear one dimensional convection-diffusion-reaction equation. To account for the wide variety of physical characteristics and boundary conditions, an iterative approach is presented that yields a reliable and precise solution every time. We examined the accuracy and operational efficiency of two distinct finite difference approaches. The efficiency of the system is determined by comparing the estimated results to the appropriate analytical solution by adhering to established norms. Coherence and convergence were analyzed for each approach. The simulation results demonstrate the efficacy and accuracy of these methods in solving nonlinear convection- diffusion-reaction equations. Convection-diffusion-reaction equation modeling is critical for employing the offered results in heat and mass transport processes.展开更多
文摘In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the solutions of (1 .1 ) for case p≠0. These results improve sveral well-known results.
文摘A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
文摘The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.
文摘In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
文摘In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.
基金supported by Natural Science Foundation of China(11271372)Hunan Provincial Natural Science Foundation of China(12JJ2004)
文摘In this paper, we concern with the following fourth order elliptic equations of Kirchhoff type {Δ^2u-(a+bfR^3|↓△u|^2dx)△u+V(x)u=f(x,u),x∈R^3, u∈H^2(R3),where a, b 〉 0 are constants and the primitive of the nonlinearity f is of superlinear growth near infinity in u and is also allowed to be sign-changing. By using variational methods, we establish the existence and multiplicity of solutions. Our conditions weaken the Ambrosetti- Rabinowitz type condition.
基金The 985 Program of Jilin Universitythe Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University
文摘This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
文摘In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.
文摘This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.
文摘In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>
文摘In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.
基金supported by the National Natural Science Foundation of China (No.10871131)the Science and Technology Commission of Shanghai Municipality (No.075105118)+1 种基金the Shanghai Leading Academic Discipline Project (No.S30405)the Fund for E-institutes of Shanghai Universities(No.E03004)
文摘In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.
基金The project supported by the National Natural Science Foundation of China(No.19902010)
文摘An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
文摘In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.
文摘A mathematical model comprising of nonlinear reaction, diffusion, and convection mechanisms seen in natural and anthropogenic processes is numerically investigated here. It is proposed that a higher order numerical scheme of finite difference method be used in conjunction with an iterative approach in order to solve the nonlinear one dimensional convection-diffusion-reaction equation. To account for the wide variety of physical characteristics and boundary conditions, an iterative approach is presented that yields a reliable and precise solution every time. We examined the accuracy and operational efficiency of two distinct finite difference approaches. The efficiency of the system is determined by comparing the estimated results to the appropriate analytical solution by adhering to established norms. Coherence and convergence were analyzed for each approach. The simulation results demonstrate the efficacy and accuracy of these methods in solving nonlinear convection- diffusion-reaction equations. Convection-diffusion-reaction equation modeling is critical for employing the offered results in heat and mass transport processes.