Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a f...Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam. The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four- and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albedo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams. One additional experiment is carried out to evaluate the simulations of the BATS land surface model coupled with the two- and four-stream radiative transfer models. Station observations in 1998 are used for comparison. The results indicate that the simulation of BATS coupled with the four-stream model is the best because the surface absorbed solar radiation from the four-stream model is the closest to the observation.展开更多
本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四...本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四流上的推广。因此新方案在计算精度上要优于原方案。通过在全球气候模式中的应用与比较,本文发现新方案对气候模拟会产生比较大的影响。在晴空条件下,新方案计算的在南纬30°到60°区间、北大西洋东北部以及非洲北部的撒哈拉沙漠区域的地表向下年平均短波辐射通量要小于原方案结果,最大差别可以达到3.5 W/m2;同时,新方案计算的在南纬30°到60°区间和北大西洋东北部的大气顶向上年平均短波辐射通量要大于原方案结果,最大差别达到3 W/m2。在有云大气情况下,新方案计算的地表向下年平均短波辐射通量要小于原方案结果,并随着纬度的增加,新旧两种方案的差别逐渐变大,在南北极时达到最大5.5 W/m2;同时,新方案计算的在赤道区域的大气顶的年平均短波向上辐射通量要小于原方案结果,最大差别为2.5 W/m2,而在南北纬30°到60°区间,新方案计算的在大气顶的年平均短波向上辐射通量则要大于原方案结果,最大差别为1.5 W/m2。新方案计算的年平均短波加热率普遍高于原方案结果,特别是在800 h Pa到地表之间的低层大气以及50 h Pa到100 h Pa的高层大气,最大差别可达0.03 K/d。因此,新方案有助于改善全球气候模式中普遍存在的赤道平流层中下层的温度冷偏差现象。展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.40375026 and 40233034.
文摘Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam. The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four- and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albedo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams. One additional experiment is carried out to evaluate the simulations of the BATS land surface model coupled with the two- and four-stream radiative transfer models. Station observations in 1998 are used for comparison. The results indicate that the simulation of BATS coupled with the four-stream model is the best because the surface absorbed solar radiation from the four-stream model is the closest to the observation.
文摘本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四流上的推广。因此新方案在计算精度上要优于原方案。通过在全球气候模式中的应用与比较,本文发现新方案对气候模拟会产生比较大的影响。在晴空条件下,新方案计算的在南纬30°到60°区间、北大西洋东北部以及非洲北部的撒哈拉沙漠区域的地表向下年平均短波辐射通量要小于原方案结果,最大差别可以达到3.5 W/m2;同时,新方案计算的在南纬30°到60°区间和北大西洋东北部的大气顶向上年平均短波辐射通量要大于原方案结果,最大差别达到3 W/m2。在有云大气情况下,新方案计算的地表向下年平均短波辐射通量要小于原方案结果,并随着纬度的增加,新旧两种方案的差别逐渐变大,在南北极时达到最大5.5 W/m2;同时,新方案计算的在赤道区域的大气顶的年平均短波向上辐射通量要小于原方案结果,最大差别为2.5 W/m2,而在南北纬30°到60°区间,新方案计算的在大气顶的年平均短波向上辐射通量则要大于原方案结果,最大差别为1.5 W/m2。新方案计算的年平均短波加热率普遍高于原方案结果,特别是在800 h Pa到地表之间的低层大气以及50 h Pa到100 h Pa的高层大气,最大差别可达0.03 K/d。因此,新方案有助于改善全球气候模式中普遍存在的赤道平流层中下层的温度冷偏差现象。