The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, t...The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.展开更多
It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostr...It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostructure.It has been also shown that together with increasing of the sharpness,homogeneity of impurity distribution in doped area increases.The both effect could be increased by formation of an inhomogeneous distribution of temperature(for example,by laser annealing).Some conditions on correlation between inhomogeneities of the semiconductor heterostructure and temperature distribution have been considered.Annealing time has been optimized for pulse laser annealing.展开更多
In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifi...In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.展开更多
新型脉冲功率设备对直流侧母线电压提出较高的性能要求,为减小脉冲负载对直流电压波动率的影响,建立带脉冲负载三相整流器拓扑结构及数学模型,并在现有无源控制(passivity based control,PBC)设计的基础上,以保证系统稳定性为前提,提出...新型脉冲功率设备对直流侧母线电压提出较高的性能要求,为减小脉冲负载对直流电压波动率的影响,建立带脉冲负载三相整流器拓扑结构及数学模型,并在现有无源控制(passivity based control,PBC)设计的基础上,以保证系统稳定性为前提,提出注入虚拟储能的无源控制算法(virtual energy storage injection PBC,VESI-PBC),该算法以提高能量函数收敛速度为目标,可有效降低直流母线电压波动率,提高抗负载扰动能力。分别基于根轨迹法和时域分析法,讨论VESI-PBC引入储能矩阵后,增大虚拟电感值L_(n)对系统的稳定性和动态性能的影响。为满足直流侧性能要求和保证系统稳定性,利用脉冲负载对直流电压波动率的影响规律,提出L_(n)自适应选取函数f(f_(PL)),使L_(n)自适应平衡系统高频毛刺和低频强脉冲冲击的不同需求。最后,通过仿真及实际试验,验证VESI-PBC算法对减小直流母线电压波动率的有效性,并指出该算法的实质是控制内环电流超前响应直流电压的动态变化及其变化趋势,由此具有较强的抗负载扰动能力,适用于负载脉冲功率等级高、动态特性强烈的场合。展开更多
The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the devic...The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.展开更多
文摘The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.
基金supported by grant of President of Russia (project № MK-548.2010.2)
文摘It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers,which are formed in the semiconductor heterostructure.It has been also shown that together with increasing of the sharpness,homogeneity of impurity distribution in doped area increases.The both effect could be increased by formation of an inhomogeneous distribution of temperature(for example,by laser annealing).Some conditions on correlation between inhomogeneities of the semiconductor heterostructure and temperature distribution have been considered.Annealing time has been optimized for pulse laser annealing.
文摘In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.
文摘新型脉冲功率设备对直流侧母线电压提出较高的性能要求,为减小脉冲负载对直流电压波动率的影响,建立带脉冲负载三相整流器拓扑结构及数学模型,并在现有无源控制(passivity based control,PBC)设计的基础上,以保证系统稳定性为前提,提出注入虚拟储能的无源控制算法(virtual energy storage injection PBC,VESI-PBC),该算法以提高能量函数收敛速度为目标,可有效降低直流母线电压波动率,提高抗负载扰动能力。分别基于根轨迹法和时域分析法,讨论VESI-PBC引入储能矩阵后,增大虚拟电感值L_(n)对系统的稳定性和动态性能的影响。为满足直流侧性能要求和保证系统稳定性,利用脉冲负载对直流电压波动率的影响规律,提出L_(n)自适应选取函数f(f_(PL)),使L_(n)自适应平衡系统高频毛刺和低频强脉冲冲击的不同需求。最后,通过仿真及实际试验,验证VESI-PBC算法对减小直流母线电压波动率的有效性,并指出该算法的实质是控制内环电流超前响应直流电压的动态变化及其变化趋势,由此具有较强的抗负载扰动能力,适用于负载脉冲功率等级高、动态特性强烈的场合。
基金Project supported by the Beijing Municipal Natural Science Foundation,China(Grant No.4162030)the National Science and Technology Major Project of China(Grant No.2013ZX02303002)
文摘The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.