In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of...An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.展开更多
Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential e...Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Pain...There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations unde...Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations under arbitrary boundary condition. By this method, the general computation formal is obtained. Its convergence in proved. We can get analytic expressions which converge to exact solution and its higher order derivatives uniformy Four numerical examples are given, which indicate that satisfactory results can he obtanedby this method.展开更多
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin...How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.展开更多
This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations pro...This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations processes are computed in several illustrative examples.展开更多
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl...The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.展开更多
The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- effi...The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.展开更多
A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be appl...A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.展开更多
According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numeric...According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.展开更多
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金The authors are grateful to the editor,the associate editor and the anonymous reviewers for their constructive and helpful comments.This work was supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010026),the National Natural Science Foundation of China(No.11701304,11526117)Zhejiang Provincial Natural Science Foundation of China(No.LQ16A010006)+1 种基金the Natural Science Foundation of Ningbo City,China(No.2017A610143)the Natural Science Foundation of Ningbo City,China(2018A610195).
文摘An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.
文摘Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
基金Supported by the Shanxi Education Department Project(Grant No.J2020398)Key Natural Science Projects of Shanxi Energy Institute(Grant No.ZZ-2018003)。
文摘There is a close relationship between the Painlevéintegrability and other integrability of nonlinear evolution equation.By using the Weiss-Tabor-Carnevale(WTC)method and the symbolic computation of Maple,the Painlevétest is used for the higher order generalized non-autonomous equation and the third order Korteweg-de Vries equation with variable coefficients.Finally the Painlevéintegrability condition of this equation is gotten.
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
文摘Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations under arbitrary boundary condition. By this method, the general computation formal is obtained. Its convergence in proved. We can get analytic expressions which converge to exact solution and its higher order derivatives uniformy Four numerical examples are given, which indicate that satisfactory results can he obtanedby this method.
基金Project supported by the National Natural Science Foundation of China(No.10461005)
文摘How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.
文摘This paper deals with the construction of Heun’s method of random initial value problems. Sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations processes are computed in several illustrative examples.
基金the Natural Science Foundation of Anhui Province(Grant No.1908085QA09)the University Natural Science Research Project of Anhui Province(KJ2019A0591).
文摘The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.
基金National Natural Science Foundation of China(No.51178175)
文摘The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.
基金This work is supported by the National Science Fund of Peop1e's Republic of China
文摘A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.
基金supported by the National Natural Science Foundation of China Under Grant No.61773008.
文摘According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.