Teacher education at the foundational and preparatory stages plays a crucial role in shaping early childhood learning experiences.The National Curriculum Framework for School Education(NCFSE)2023 provides a structured...Teacher education at the foundational and preparatory stages plays a crucial role in shaping early childhood learning experiences.The National Curriculum Framework for School Education(NCFSE)2023 provides a structured pedagogical approach to address challenges in these stages.However,despite these policy frameworks,teachers in Kendriya Vidyalayas(KVs)continue to face numerous pedagogical challenges.This paper aims to explore and analyze the pedagogical challenges encountered by KV teachers in foundational and preparatory stage classrooms and compare them with the challenges addressed in NCFSE 2023.Using qualitative research methods,data were collected through structured online interviews with 10 KV teachers from different campuses.This paper investigated various challenges,including classroom management,language barriers,a lack of inclusive education strategies,insufficient infrastructure,limited parental involvement,and difficulties in integrating technology into teaching practices.The findings highlight the gap between policy recommendations and ground-level implementation.Based on these insights,the study suggests recommendations such as specialized teacher training,recruitment of special educators,improved infrastructure,enhanced parental engagement,and policy-driven interventions to bridge the gap between policy frameworks and real-world classroom experiences.The study concludes that addressing these challenges through targeted reforms can create a more inclusive and effective learning environment,fostering holistic student development at the foundational and preparatory stages.展开更多
POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,...POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,physical,and information fusion.These systems are known as cyber-physicalsocial systems(CPSS)[1],[2].These CPSS face unprecedented challenges in design,analysis,management,control and integration due to their involvement with human and social factors[3],[4].To cope with this challenge,there are two main approaches to CPSS research.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.展开更多
There are at least three foundational relationships between the three conscious acts of intellect,emotion,and willing.Section 2 covers the structural foundational relationship(Brentano and Husserl in his early period)...There are at least three foundational relationships between the three conscious acts of intellect,emotion,and willing.Section 2 covers the structural foundational relationship(Brentano and Husserl in his early period):all conscious acts are intentional and can be divided into objectifying(intuition and representation)and non・objectifying acts(emotion and willing).Because a non-objectifying act cannot constitute an object,things must be based on objectifying acts and the object constituted by the latter;in this sense,a non-objectifying act is rooted in an objectifying one.Section 3 explains the genetic foundational issue with consciousness(Husserl in his later period,Scheier,and Heidegger):the stream of consciousness has its earliest origins and follows a process where it gradually unfolds.The earliest origin is the intentional willing,followed by nonintentional feelings,and,finally,the representation and thinking of willing.Intentional activity taking place afterward must be based on the conscious activity that has come already.Section 4 points out that,apart from the two aforementioned kinds of foundational relationships(i.e.structural and genetic),a third foundational relationship(i.e.dynamic)can also be found between the conscious acts of intellect,emotion,and willing in the Consciousness-only school(a Buddhist tradition in the East).In a continuous activity,the foundational relationship between the three aspects of intellect,emotion,and willing always remains encased in dynamic changes,and the change of primary and secondary roles(i.e.a change in the foundational relationship)could happen at any time.From this perspective,one can explain and resolve the confrontation and conflicts between the two former foundational relationships.展开更多
Industrial Intelligence and Secure Interconnection,Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying signi...Industrial Intelligence and Secure Interconnection,Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.Currently,the global industrial landscape is undergoing profound transformation.Major Western countries and relevant authoritative bodies,leveraging their first-mover advantages in industrial network standards and protocols,are actively constructing technical barriers and exclusive industrial ecosystems.According to the 2024 Industrial Network Market Share Report,foreign standards account for over 90%of the market share in mainstream industrial network protocols.Concurrently,China's industrial AI technology remains largely built upon the technical framework defined by Western academia and industry,characterized by deep learning and reinforcement learning.There is widespread reliance on AI computing equipment。展开更多
In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for...In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for predicting energy demands in retail stores,which can enhance market efficiency and contribute to grid stability.We analyze a detailed electricity consumption dataset from a hypermarket in Hungary,focusing on 48-hour forecasts at 15-minute intervals.Our methodology includes the implementation of classical models such as ARIMA and linear regression,as well as state-of-the-art deep learning models like TiDE and foundational models such as Lag-Llama in a“zero shot prediction”as well as a“finetuning”scenario.展开更多
Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinar...Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Scienc e Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.展开更多
On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the Chin...On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the China-Myanmar Economic Cooperation and Development Promotion Association(Myanmar),held a handover ceremony at Yangon Airport to donate five tons of medicine to the disasterstricken areas of Myanmar.展开更多
The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles...The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles due to the increase in loads on the structures,or the recovery of the foundation mass by injection,which is carried out when voids form between the ground and the wooden foundation elements.The high cost of foundation reinforcement methods led the National Agency for the Development of Tourist Heritage in Benin(ANPT)to replace the wooden foundation piles with reinforced concrete piles in the implementation of the project“reinventing the lakeside city of Ganvié”.This article presents an artisanal technology for the creation of reinforced concrete foundation piles in a lake environment.On-site examples made it possible to evaluate the performance of this artisanal implementation technique.The installation of these piles is carried out following manual drilling,followed by the installation of reinforcement and the pouring of concrete on site.The implementation of reinforced concrete foundation piles in place of the wooden ones studied in this article only impacted the infrastructure of the homes of the lakeside town of Ganviébut not the superstructure,which preserved the old traditional wooden architecture and thatched roofs.Thus,the ambition to move this city of Ganviéfrom the stage of a lake village to that of a floating city is very successful.This will contribute to improving the environment and living conditions of the populations and will promote economic development through tourism.展开更多
This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled a...This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from H...Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.展开更多
Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research fun...Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.展开更多
Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°...Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°) and chromatic aberration (E) were measured as evaluation indicators by standard black/white cardboard,artificial leather and artificial sweat.In clinical assessment,the anti-stain,waterproof,anti-sweat effect of the foundation products were evaluated through the ΔE change,before and after the treatment of products by staining,wetting,sweating in forearm skin.There were significant differences in CR ratio of different types of samples on standard black and white cardboards (P<0.05),ITA° of artificial leather has a significant increase after treatment (P<0.05),?E﹤1.5 in black cloth after dipping test,while ΔE﹤1.5 in leather after water and artificial sweat treatment.Clinical assessment showed that ?E ﹤50%,which had no significant difference in human skin color,before and after the test (P>0.05).The change trend of efficacy evaluation in vitro test was basically consistent with that of visual evaluation and clinical assessment,indicated that the efficacy evaluation methods of foundation products in vivo and vitro are intuitive,quantifiable,and can be used to evaluate the efficacy of foundation products.展开更多
This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scale...This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scales from piezoresistive tests on graphite nanoflakes to the bending of floating ice shelves atop seabed,where the elastic layer commonly exhibits certain anisotropy.We first develop an approximate model to describe the elastic response of a transversely isotropic layer by exploiting the slenderness of the layer.We show that this approximate model can be reduced to the classic compressible Winkler foundation model as the elastic constants of the layer are set isotropic.We then investigate the combined response of an elastic plate on the transversely isotropic elastic layer.Facilitated by the simplicity of our proposed approximate model,we can derive simple analytical solutions for the cases of small and large indenter radi.The analytical results agree well with numerical calculations obtained via finite element methods,as long as the system is sufficiently slender in a mechanical sense.These results offer quantitative insights into the mechanical behavior of numerous semiconductor materials characterized by transverse isotropy and employed with slender geometries in various practical applications where the thin layer works as conductive and functional layers.展开更多
This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With th...This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With the expansion of large shopping malls and underground urban spaces(UUS),there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation,remodeling,and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps.The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site map of the up-to-date indoor site and recognizes complex indoor spaces based on zero-shot learning.This research specifically addresses two major challenges:the difficulty of detecting walls and floors due to complex patterns and the difficulty of spatial perception due to unknown obstacles.The proposed algorithm addresses the limitations of the existing foundation model,detects floors and obstacles without expensive sensors,and improves the accuracy of spatial recognition by combining floor detection,vanishing point detection,and fusion obstacle detection algorithms.The experimental results show that the algorithm effectively detects the floor and obstacles in various indoor environments,with F1 scores of 0.96 and 0.93 in the floor detection and obstacle detection experiments,respectively.展开更多
Drains play an important role in seepage control in geotechnical engineering.The enormous number and one-dimensional(1D)geometry of drainage holes make their nature difficult to be accurately modeled in groundwater fl...Drains play an important role in seepage control in geotechnical engineering.The enormous number and one-dimensional(1D)geometry of drainage holes make their nature difficult to be accurately modeled in groundwater flow simulation.It has been well understood that drains function by presenting discharge boundaries,which can be characterized by water head,no-flux,unilateral or mixed water head-unilateral boundary condition.It has been found after years of practices that the flow simulation may become erroneous if the transitions among the drain boundary conditions are not properly considered.For this,a rigorous algorithm is proposed in this study to detect the onset of transitions among the water head,noflux and mixed water head-unilateral boundary conditions for downwards-drilled drainage holes,which theoretically completes the description of drain boundary conditions.After verification against a numerical example,the proposed algorithm is applied to numerical modeling of groundwater flow through a gravity dam foundation.The simulation shows that for hundreds of downwards-drilled drainage holes used to be prescribed with water head boundary condition,56%and 2%of them are transitioned to mixed water head-unilateral and no-flux boundary conditions,respectively.The phreatic surface around the drains will be overestimated by 25e33 m without the use of the mixed boundary condition.For the first time,this study underscores the importance of the mixed water head-unilateral boundary condition and the proposed transition algorithm in drain modeling,which may become more essential for simulation of transient flow because of groundwater dynamics.展开更多
文摘Teacher education at the foundational and preparatory stages plays a crucial role in shaping early childhood learning experiences.The National Curriculum Framework for School Education(NCFSE)2023 provides a structured pedagogical approach to address challenges in these stages.However,despite these policy frameworks,teachers in Kendriya Vidyalayas(KVs)continue to face numerous pedagogical challenges.This paper aims to explore and analyze the pedagogical challenges encountered by KV teachers in foundational and preparatory stage classrooms and compare them with the challenges addressed in NCFSE 2023.Using qualitative research methods,data were collected through structured online interviews with 10 KV teachers from different campuses.This paper investigated various challenges,including classroom management,language barriers,a lack of inclusive education strategies,insufficient infrastructure,limited parental involvement,and difficulties in integrating technology into teaching practices.The findings highlight the gap between policy recommendations and ground-level implementation.Based on these insights,the study suggests recommendations such as specialized teacher training,recruitment of special educators,improved infrastructure,enhanced parental engagement,and policy-driven interventions to bridge the gap between policy frameworks and real-world classroom experiences.The study concludes that addressing these challenges through targeted reforms can create a more inclusive and effective learning environment,fostering holistic student development at the foundational and preparatory stages.
基金supported in part by the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金Open Research Fund of The State Key Laboratory for Management and Control of Complex Systems(20210101)New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)Tianjin University Talent Innovation Reward Program for Literature&Science Graduate Student(C1-2022-010).
文摘POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,physical,and information fusion.These systems are known as cyber-physicalsocial systems(CPSS)[1],[2].These CPSS face unprecedented challenges in design,analysis,management,control and integration due to their involvement with human and social factors[3],[4].To cope with this challenge,there are two main approaches to CPSS research.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdisciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.
文摘There are at least three foundational relationships between the three conscious acts of intellect,emotion,and willing.Section 2 covers the structural foundational relationship(Brentano and Husserl in his early period):all conscious acts are intentional and can be divided into objectifying(intuition and representation)and non・objectifying acts(emotion and willing).Because a non-objectifying act cannot constitute an object,things must be based on objectifying acts and the object constituted by the latter;in this sense,a non-objectifying act is rooted in an objectifying one.Section 3 explains the genetic foundational issue with consciousness(Husserl in his later period,Scheier,and Heidegger):the stream of consciousness has its earliest origins and follows a process where it gradually unfolds.The earliest origin is the intentional willing,followed by nonintentional feelings,and,finally,the representation and thinking of willing.Intentional activity taking place afterward must be based on the conscious activity that has come already.Section 4 points out that,apart from the two aforementioned kinds of foundational relationships(i.e.structural and genetic),a third foundational relationship(i.e.dynamic)can also be found between the conscious acts of intellect,emotion,and willing in the Consciousness-only school(a Buddhist tradition in the East).In a continuous activity,the foundational relationship between the three aspects of intellect,emotion,and willing always remains encased in dynamic changes,and the change of primary and secondary roles(i.e.a change in the foundational relationship)could happen at any time.From this perspective,one can explain and resolve the confrontation and conflicts between the two former foundational relationships.
文摘Industrial Intelligence and Secure Interconnection,Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.Currently,the global industrial landscape is undergoing profound transformation.Major Western countries and relevant authoritative bodies,leveraging their first-mover advantages in industrial network standards and protocols,are actively constructing technical barriers and exclusive industrial ecosystems.According to the 2024 Industrial Network Market Share Report,foreign standards account for over 90%of the market share in mainstream industrial network protocols.Concurrently,China's industrial AI technology remains largely built upon the technical framework defined by Western academia and industry,characterized by deep learning and reinforcement learning.There is widespread reliance on AI computing equipment。
文摘In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for predicting energy demands in retail stores,which can enhance market efficiency and contribute to grid stability.We analyze a detailed electricity consumption dataset from a hypermarket in Hungary,focusing on 48-hour forecasts at 15-minute intervals.Our methodology includes the implementation of classical models such as ARIMA and linear regression,as well as state-of-the-art deep learning models like TiDE and foundational models such as Lag-Llama in a“zero shot prediction”as well as a“finetuning”scenario.
文摘Plasma Science and Technology(PST)journal assists in advancing plasma science and technology by reporting important,novel,helpful and thought-provoking progress in this strongly multidisciplinary and interdis ciplinary field,in a timely manner.This field encompasses foundational plasma phenomena;low-temperature plasmas;magnetically confined plasmas;inertially confined plasmas;astrophysics and space plasmas;and interdisciplinary science of these;and the engineering and technology development and application from them.PST is sponsored jointly by the Institute of Plasma Physics of the Chinese Academy of Sciences,and the Chinese Society of Theoretical and Applied Mechanics.The journal joined the Scienc e Citation Index in 2003,the Engineering Index in 2006,and became published online by IOP Publishing Ltd.in 2006.
文摘On April 26,the China Foundation for Peace and Development(CFPD),in collaboration with the Shenzhen Foundation for International Exchange and Cooperation(SFIEC),the Shenzhen Ye Chenghai Charity Foundation and the China-Myanmar Economic Cooperation and Development Promotion Association(Myanmar),held a handover ceremony at Yangon Airport to donate five tons of medicine to the disasterstricken areas of Myanmar.
文摘The problems noted in the structures built on wooden foundation piles in a lake environment required various works to strengthen over time.This work mainly consists of the recovery of the foundation mass by micropiles due to the increase in loads on the structures,or the recovery of the foundation mass by injection,which is carried out when voids form between the ground and the wooden foundation elements.The high cost of foundation reinforcement methods led the National Agency for the Development of Tourist Heritage in Benin(ANPT)to replace the wooden foundation piles with reinforced concrete piles in the implementation of the project“reinventing the lakeside city of Ganvié”.This article presents an artisanal technology for the creation of reinforced concrete foundation piles in a lake environment.On-site examples made it possible to evaluate the performance of this artisanal implementation technique.The installation of these piles is carried out following manual drilling,followed by the installation of reinforcement and the pouring of concrete on site.The implementation of reinforced concrete foundation piles in place of the wooden ones studied in this article only impacted the infrastructure of the homes of the lakeside town of Ganviébut not the superstructure,which preserved the old traditional wooden architecture and thatched roofs.Thus,the ambition to move this city of Ganviéfrom the stage of a lake village to that of a floating city is very successful.This will contribute to improving the environment and living conditions of the populations and will promote economic development through tourism.
基金Project(52178402) supported by the National Natural Science Foundation of China。
文摘This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
文摘Hu Junhui,president of Tianfu Association(Singapore)and recipient of the Public Service Medal(PBM),has been leading community efforts to help new Chinese immigrants integrate into Singaporean society.Originally from Hebei Province in China,Hu arrived in Singapore in 1994 as one of the first technical professionals dispatched by China.Since then,he has built a life and career firmly rooted in Singapore.Over more than four years at China Construction(South Pacific)Development Co Pte Ltd,he rose through the ranks from project engineer to site manager and eventually project director.In 1999,he left the company to start his own business,setting up a construction firm with several partners.His focus shifted to real estate in 2007,when he co-founded JVA Venture Pte Ltd.
文摘Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.
文摘Establish an efficacy evaluation method for foundation products in vivo and vitro.The hiding power,whiteness,waterproof and anti-sweat effect were evaluated in vitro test,where CR ratio,Individual Type Angle (ITA°) and chromatic aberration (E) were measured as evaluation indicators by standard black/white cardboard,artificial leather and artificial sweat.In clinical assessment,the anti-stain,waterproof,anti-sweat effect of the foundation products were evaluated through the ΔE change,before and after the treatment of products by staining,wetting,sweating in forearm skin.There were significant differences in CR ratio of different types of samples on standard black and white cardboards (P<0.05),ITA° of artificial leather has a significant increase after treatment (P<0.05),?E﹤1.5 in black cloth after dipping test,while ΔE﹤1.5 in leather after water and artificial sweat treatment.Clinical assessment showed that ?E ﹤50%,which had no significant difference in human skin color,before and after the test (P>0.05).The change trend of efficacy evaluation in vitro test was basically consistent with that of visual evaluation and clinical assessment,indicated that the efficacy evaluation methods of foundation products in vivo and vitro are intuitive,quantifiable,and can be used to evaluate the efficacy of foundation products.
基金supported by the National Natural Science Foundation of China(12372103)the Opening Fund of State Key Laboratory of Nonlinear Mechanics(Institute of Mechanics,CAS)the Fundamental Research Funds for Central Universities(Peking University).
文摘This work investigates the indentation response of an elastic plate resting upon a thin,transversely isotropic elastic layer supported by a rigid substrate.Such a scenario is encountered across a range of length scales from piezoresistive tests on graphite nanoflakes to the bending of floating ice shelves atop seabed,where the elastic layer commonly exhibits certain anisotropy.We first develop an approximate model to describe the elastic response of a transversely isotropic layer by exploiting the slenderness of the layer.We show that this approximate model can be reduced to the classic compressible Winkler foundation model as the elastic constants of the layer are set isotropic.We then investigate the combined response of an elastic plate on the transversely isotropic elastic layer.Facilitated by the simplicity of our proposed approximate model,we can derive simple analytical solutions for the cases of small and large indenter radi.The analytical results agree well with numerical calculations obtained via finite element methods,as long as the system is sufficiently slender in a mechanical sense.These results offer quantitative insights into the mechanical behavior of numerous semiconductor materials characterized by transverse isotropy and employed with slender geometries in various practical applications where the thin layer works as conductive and functional layers.
基金supported by Kyonggi University Research Grant 2024.
文摘This paper proposes a zero-shot based spatial recognition AI algorithm by fusing and developing multidimensional vision identification technology adapted to the situation in large indoor and underground spaces.With the expansion of large shopping malls and underground urban spaces(UUS),there is an increasing need for new technologies that can quickly identify complex indoor structures and changes such as relocation,remodeling,and construction for the safety and management of citizens through the provision of the up-to-date indoor 3D site maps.The proposed algorithm utilizes data collected by an unmanned robot to create a 3D site map of the up-to-date indoor site and recognizes complex indoor spaces based on zero-shot learning.This research specifically addresses two major challenges:the difficulty of detecting walls and floors due to complex patterns and the difficulty of spatial perception due to unknown obstacles.The proposed algorithm addresses the limitations of the existing foundation model,detects floors and obstacles without expensive sensors,and improves the accuracy of spatial recognition by combining floor detection,vanishing point detection,and fusion obstacle detection algorithms.The experimental results show that the algorithm effectively detects the floor and obstacles in various indoor environments,with F1 scores of 0.96 and 0.93 in the floor detection and obstacle detection experiments,respectively.
基金Financial support from the National Natural Science Foundation of China(Grant Nos.51925906 and U2340228)the Natural Science Foundation of Hubei Province(Grant No.2022CFA028)is acknowledged.
文摘Drains play an important role in seepage control in geotechnical engineering.The enormous number and one-dimensional(1D)geometry of drainage holes make their nature difficult to be accurately modeled in groundwater flow simulation.It has been well understood that drains function by presenting discharge boundaries,which can be characterized by water head,no-flux,unilateral or mixed water head-unilateral boundary condition.It has been found after years of practices that the flow simulation may become erroneous if the transitions among the drain boundary conditions are not properly considered.For this,a rigorous algorithm is proposed in this study to detect the onset of transitions among the water head,noflux and mixed water head-unilateral boundary conditions for downwards-drilled drainage holes,which theoretically completes the description of drain boundary conditions.After verification against a numerical example,the proposed algorithm is applied to numerical modeling of groundwater flow through a gravity dam foundation.The simulation shows that for hundreds of downwards-drilled drainage holes used to be prescribed with water head boundary condition,56%and 2%of them are transitioned to mixed water head-unilateral and no-flux boundary conditions,respectively.The phreatic surface around the drains will be overestimated by 25e33 m without the use of the mixed boundary condition.For the first time,this study underscores the importance of the mixed water head-unilateral boundary condition and the proposed transition algorithm in drain modeling,which may become more essential for simulation of transient flow because of groundwater dynamics.