It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-f...It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period ofa forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.展开更多
Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applic...Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.展开更多
Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the inter...Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.展开更多
基金National Natural Science Foundation of ChinaUnder Grant No.50408003
文摘It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period ofa forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.
基金National Natural Science Foundation of China under Grant Nos.U1434205 and 51678490the Major Research Plan of China National Railway Ministry of China under Grant Nos.2015G002-B and P2018G007the National Key R&D Program of China under Grant No.2017YFC1500803。
文摘Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.
文摘Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.