On account of the traditional multiple signal classification(MUSIC)algorithm has poor performance in time delay estimation under the condition of small sampling data and low SNR.In this paper,the traditional MUSIC alg...On account of the traditional multiple signal classification(MUSIC)algorithm has poor performance in time delay estimation under the condition of small sampling data and low SNR.In this paper,the traditional MUSIC algorithm is improved.The algorithm combines the idea of spatial smoothing,constructs a new covariance matrix using the covariance information of the measurement data,and constructs a weighted value using the modified noise eigenvalues to weight the traditional estimation spectrum.Simulation results show that the improved algorithm has steeper spectral peaks and better time delay resolution under the condition of inaccurate path number estimation.The time delay estimation accuracy of this algorithm is higher than that of the traditional MUSIC algorithm and the improved SSMUSIC algorithm under the conditions of small sampling data and low SNR.展开更多
智能天线的一项核心技术是波达方向(Direction of Arrival,DOA)的估计,它在无线定位的应用领域中有着十分重要的意义.为了对信号的DOA作出精确的估计,提出一种基于空间平滑技术的改进型MUSIC(Multiple Signal Classification)算法.仿真...智能天线的一项核心技术是波达方向(Direction of Arrival,DOA)的估计,它在无线定位的应用领域中有着十分重要的意义.为了对信号的DOA作出精确的估计,提出一种基于空间平滑技术的改进型MUSIC(Multiple Signal Classification)算法.仿真结果表明经典的MUSIC算法只能对非相干信号的DOA作出精确的估计,而改进型MUSIC算法对相干信号的DOA也能作出精确的估计.展开更多
针对传统解相干算法在低信噪比条件下不能有效分辨角度接近的信号源DOA的问题,提出一种基于空间平滑技术的特征空间多重信号分类MUSIC(Multiple Signal Classification)算法。首先用改进的空间平滑算法对相干信号进行预处理,然后对其应...针对传统解相干算法在低信噪比条件下不能有效分辨角度接近的信号源DOA的问题,提出一种基于空间平滑技术的特征空间多重信号分类MUSIC(Multiple Signal Classification)算法。首先用改进的空间平滑算法对相干信号进行预处理,然后对其应用特征空间MUSIC算法进行精确的DOA估计。计算机仿真结果表明,该算法的改进能更加有效地估计相隔较近的小信噪比信号源的DOA,分辨能力较强。展开更多
针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后...针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。展开更多
利用实值信号特性提高波达方向(direction of arrival,DOA)估计性能,提出一种新的共轭多重信号分类(conjugate multiple signal classification,CMUSIC)算法。先拼接阵列上的接收数据矩阵和其共轭矩阵,再利用新矩阵中数据间的均匀延迟...利用实值信号特性提高波达方向(direction of arrival,DOA)估计性能,提出一种新的共轭多重信号分类(conjugate multiple signal classification,CMUSIC)算法。先拼接阵列上的接收数据矩阵和其共轭矩阵,再利用新矩阵中数据间的均匀延迟关系进行矩阵重构,对其奇异值分解获得信号子空间。CMUSIC可充分利用信号的实值特点,对多于阵元数的信号进行测向,不仅可以处理非相干信号,还可以处理相干信号,获得的测向精度优于多重信号分类(multiple signal classification,MUSIC)算法和空间平滑算法。仿真实验结果证实了CMUSIC算法的有效性。展开更多
文摘On account of the traditional multiple signal classification(MUSIC)algorithm has poor performance in time delay estimation under the condition of small sampling data and low SNR.In this paper,the traditional MUSIC algorithm is improved.The algorithm combines the idea of spatial smoothing,constructs a new covariance matrix using the covariance information of the measurement data,and constructs a weighted value using the modified noise eigenvalues to weight the traditional estimation spectrum.Simulation results show that the improved algorithm has steeper spectral peaks and better time delay resolution under the condition of inaccurate path number estimation.The time delay estimation accuracy of this algorithm is higher than that of the traditional MUSIC algorithm and the improved SSMUSIC algorithm under the conditions of small sampling data and low SNR.
文摘智能天线的一项核心技术是波达方向(Direction of Arrival,DOA)的估计,它在无线定位的应用领域中有着十分重要的意义.为了对信号的DOA作出精确的估计,提出一种基于空间平滑技术的改进型MUSIC(Multiple Signal Classification)算法.仿真结果表明经典的MUSIC算法只能对非相干信号的DOA作出精确的估计,而改进型MUSIC算法对相干信号的DOA也能作出精确的估计.
文摘针对传统解相干算法在低信噪比条件下不能有效分辨角度接近的信号源DOA的问题,提出一种基于空间平滑技术的特征空间多重信号分类MUSIC(Multiple Signal Classification)算法。首先用改进的空间平滑算法对相干信号进行预处理,然后对其应用特征空间MUSIC算法进行精确的DOA估计。计算机仿真结果表明,该算法的改进能更加有效地估计相隔较近的小信噪比信号源的DOA,分辨能力较强。
文摘针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。
文摘利用实值信号特性提高波达方向(direction of arrival,DOA)估计性能,提出一种新的共轭多重信号分类(conjugate multiple signal classification,CMUSIC)算法。先拼接阵列上的接收数据矩阵和其共轭矩阵,再利用新矩阵中数据间的均匀延迟关系进行矩阵重构,对其奇异值分解获得信号子空间。CMUSIC可充分利用信号的实值特点,对多于阵元数的信号进行测向,不仅可以处理非相干信号,还可以处理相干信号,获得的测向精度优于多重信号分类(multiple signal classification,MUSIC)算法和空间平滑算法。仿真实验结果证实了CMUSIC算法的有效性。