This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency...Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.展开更多
We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)proc...We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.展开更多
To investigate the forward kinematics problem of parallel mechanisms with complex limbs and to expand the applicability of the powerful tool of Conformal Geometric Algebra(CGA),a CGA-based modeling and solution method...To investigate the forward kinematics problem of parallel mechanisms with complex limbs and to expand the applicability of the powerful tool of Conformal Geometric Algebra(CGA),a CGA-based modeling and solution method for a class of parallel platforms with 3-RE structure after locking the actuated joints is proposed in this paper.Given that the angle between specific joint axes of limbs remains constant,a set of geometric constraints for the forward kinematics of parallel mechanisms(PM)are determined.After translating unit direction vectors of these joint axes to the common starting point,the geometric constraints of the angle between the vectors are transformed into the distances between the endpoints of the vectors,making them easier to handle.Under the framework of CGA,the positions of key points that determine the position and orientation of the moving platform can be intuitively determined by the intersection,division,and duality of basic geometric entities.By employing the tangent half-angle substitution,the forward kinematic analysis of the parallel mechanisms leads to a high-order univariate polynomial equation without the need for any complex algebraic elimination operations.After solving this equation and back substitution,the position and pose of the MP can be obtained indirectly.A numerical case is utilized to confirm the effectiveness of the proposed method.展开更多
This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric ...This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to c...Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.展开更多
A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in thi...A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.展开更多
On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Du...On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from different countries,including China,Kenya and Japan,engaged in indepth discussions on the theme.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but t...The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.展开更多
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplic...A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplicities of secondary charged particles in the backward and forward hemispheres are investigated.展开更多
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively est...In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.展开更多
As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonh...As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.展开更多
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
基金supported by The Key Science and Technology Plan Project of Jinhua City,China:2023-3-084,2023-2-011Zhejiang Provincial"Revealing the list and taking command"Project of China KYH06Y22349Open Fund Project of Key Laboratory of CNC Equipment reliability,Ministry of Education JLU-cncr-202407.
文摘Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.
基金Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624)the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQBHX0020)+3 种基金the China Electronics Technology Group Corporation 44th Research Institute(Grant No.6310001-2)the Project Grant“Noninvasive Sensing Measurement based on Terahertz Technology”from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminalsthe Key Research Program of CQUPT on Interdisciplinary and Emerging Field(A2018-01)the Venture&Innovation Support program for Chongqing Overseas Returnees Year 2022。
文摘We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.
基金Supported by National Natural Science Foundation of China (Grant No. 52175019)Beijing Municipal Natural Science Foundation of China (Grant No. L222038)+3 种基金Beijing Nova Programme Interdisciplinary Cooperation Project of China (Grant No. 20240484699)Joint Funds of Industry-University-Research of Shanghai Academy of Spaceflight Technology of China (Grant No. SAST2022-017)Beijing Municipal Key Laboratory of Space-ground Interconnection and Convergence of ChinaKey Laboratory of IoT Monitoring and Early Warning,Ministry of Emergency Management of China
文摘To investigate the forward kinematics problem of parallel mechanisms with complex limbs and to expand the applicability of the powerful tool of Conformal Geometric Algebra(CGA),a CGA-based modeling and solution method for a class of parallel platforms with 3-RE structure after locking the actuated joints is proposed in this paper.Given that the angle between specific joint axes of limbs remains constant,a set of geometric constraints for the forward kinematics of parallel mechanisms(PM)are determined.After translating unit direction vectors of these joint axes to the common starting point,the geometric constraints of the angle between the vectors are transformed into the distances between the endpoints of the vectors,making them easier to handle.Under the framework of CGA,the positions of key points that determine the position and orientation of the moving platform can be intuitively determined by the intersection,division,and duality of basic geometric entities.By employing the tangent half-angle substitution,the forward kinematic analysis of the parallel mechanisms leads to a high-order univariate polynomial equation without the need for any complex algebraic elimination operations.After solving this equation and back substitution,the position and pose of the MP can be obtained indirectly.A numerical case is utilized to confirm the effectiveness of the proposed method.
基金supported by the Opening Project of State Key Laboratory of Mechanical Transmission for Advanced Equipment(No.SKLMT-MSKFKT202330)the National Natural Science Foundation of China(No.52575022)the Jiangsu Province Postgraduate Research&Practice Innovation Program(No.KYCX25_1403)。
文摘This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金funding provided by the National Key R&D Program of China (Grant No. 2021YFB3801301)National Natural Science Foundation of China (Grant Nos. 22075076, 22208097 and 22378119)Shanghai Pilot Program for Basic Research (22TQ1400100-4)。
文摘Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.
文摘A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.
文摘On the morning of May 31st,the parallel forum"Ecological Actions to Carry Forward the Shared Values of Mankind,"as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.More than 50 experts and scholars from different countries,including China,Kenya and Japan,engaged in indepth discussions on the theme.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.
基金Supported by National Natural Science Foundation of P.R.China (10371067) the Youth Teacher Foundation of Fok Ying Tung Education Foundation (91064)New Century Excellent Young Teachers Foundation of P. R. China (NCEF-04-0633)
文摘The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475054), the Major Science and Technology Foundation of Ministry of Education of China (Grant No 205026), the Natural Science Foundation of Shanxi Province, China(Grant No 20021007) and Shanxi Provincial Foundation for Returned Scholars of China(Grant No 20031046).
文摘A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplicities of secondary charged particles in the backward and forward hemispheres are investigated.
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金jointly supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502)the National Program on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-03)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.
文摘As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.