智能网联车之间的拓扑快速变化导致车间链路质量不稳定,从而使得数据转发的效率降低。对此,本文面向城市路网提出一种基于路段实时评分的智能网联车数据转发模型(Road section scoring-based data forwarding model for intelligent con...智能网联车之间的拓扑快速变化导致车间链路质量不稳定,从而使得数据转发的效率降低。对此,本文面向城市路网提出一种基于路段实时评分的智能网联车数据转发模型(Road section scoring-based data forwarding model for intelligent connected vehicles,RSSM)。首先,根据车辆密度将路段分为两部分,并分别对两部分路段上节点间的连通性进行建模,之后得到整条路段上节点间的连通性作为该路段的得分。然后,计算整个路网中所有路段上节点间的连通性并将其作为上述路段的得分,依据整个路网对路段的评分实现源节点到目的节点的动态路径规划,保障所规划的数据转发在整体上最优。最后,在结合实验平台NS3与SUMO上进行仿真对比,实验结果表明:与同类算法相比,本文提出的数据转发模型RSSM在数据投递成功率和时延方面均优于同类数据转发方法。展开更多
正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与...正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与此相配合,设计了一种词典结构,使之能够有效地支持改进的算法。改进的算法与一般正向最大匹配算法相比大大减少了匹配次数,分析表明中文分词的速度和效率有了很大提高。展开更多
文摘智能网联车之间的拓扑快速变化导致车间链路质量不稳定,从而使得数据转发的效率降低。对此,本文面向城市路网提出一种基于路段实时评分的智能网联车数据转发模型(Road section scoring-based data forwarding model for intelligent connected vehicles,RSSM)。首先,根据车辆密度将路段分为两部分,并分别对两部分路段上节点间的连通性进行建模,之后得到整条路段上节点间的连通性作为该路段的得分。然后,计算整个路网中所有路段上节点间的连通性并将其作为上述路段的得分,依据整个路网对路段的评分实现源节点到目的节点的动态路径规划,保障所规划的数据转发在整体上最优。最后,在结合实验平台NS3与SUMO上进行仿真对比,实验结果表明:与同类算法相比,本文提出的数据转发模型RSSM在数据投递成功率和时延方面均优于同类数据转发方法。
文摘正向最大匹配分词FMM(Forward Maximum Matching)算法存在设定的最大词长初始值固定不变的问题,带来长词丢失或匹配次数较多的弊端。针对此问题提出了根据中文分词词典中的词条长度动态确定截取待处理文本长度的思想,改进了FMM算法。与此相配合,设计了一种词典结构,使之能够有效地支持改进的算法。改进的算法与一般正向最大匹配算法相比大大减少了匹配次数,分析表明中文分词的速度和效率有了很大提高。