Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonex...Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with a sequence {kn^(i)} [1, ∞) (i = 1, 2), and F := F(T1)∩ F(T2) ≠ 0. An iterative sequence for approximation common fixed points of the two nonself asymptotically nonexpansive mappings is discussed. If E has also a Frechet differentiable norm or its dual E^* has Kadec-Klee property, then weak convergence theorems are obtained.展开更多
Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E...Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.展开更多
文摘Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with a sequence {kn^(i)} [1, ∞) (i = 1, 2), and F := F(T1)∩ F(T2) ≠ 0. An iterative sequence for approximation common fixed points of the two nonself asymptotically nonexpansive mappings is discussed. If E has also a Frechet differentiable norm or its dual E^* has Kadec-Klee property, then weak convergence theorems are obtained.
基金the National Natural Science Foundation of China under Grant No. 19801017 andthe Foundation for University Key Teacher by th
文摘Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.