To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre...To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.展开更多
Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophos...Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.展开更多
Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames w...Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemis...The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.展开更多
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effe...VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower...Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.展开更多
Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)format...Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)formation and dissociation are still in controversy.In this study,montmorillonite and illite were separately mixed with quartz sand to investigate their effects on MH formation and dissociation.The microstructure of synthesized samples was observed by cryo-SEM innovatively to understand the effects of montmorillonite and illite on MH phase transition in micron scale.Results show that montmorillonite and illite both show the inhibition on MH formation kinetics and water-to-hydrate conversion,and illite shows a stronger inhibition.The 10 wt%montmorillonite addition significantly retards MH formation rate,and the 20 wt%montmorillonite has a less inhibition on the rate.The increase of illite mass ratio(0-20 wt%)retards the rate of MH formation.As the content of clay minerals increase,the water-to-hydrate conversion decreases.Cryo-SEM images presented that montmorillonite aggregates separate as individual clusters while illite particles pack as face-to-face configuration under the interaction with water.The surface-overlapped illite aggregates would make sediments pack tightly,hinder the contact between gas and water,and result in the more significant inhibition on MH formation kinetics.Under the depressurization method,the addition of clay minerals facilitates MH dissociation rate.Physicochemical properties of clay minerals and MH distribution in the pore space lead to the faster dissociation rate in clay-containing sediments.The results of this study would provide beneficial guides on geological investigations and optimizing strategies of natural gas production in marine hydrate-bearing sediments.展开更多
Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugatio...Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.展开更多
Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin...Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.展开更多
Original sedimentary manganese(Mn)deposits and supergene Mn ores are important Mn resources in China.However,the geochemical information from Chinese supergene Mn ores is scarce,and the relationship between sedimentar...Original sedimentary manganese(Mn)deposits and supergene Mn ores are important Mn resources in China.However,the geochemical information from Chinese supergene Mn ores is scarce,and the relationship between sedimentary Mn deposits and supergene Mn ores is ambiguous.In this study,we collected the original Mn-bearing dolomitic sandstones(ZK20-3 drillcore)and supergene Mn ores(Longmen Section)from eastern Hebei,North China for systematic petrographic,mineralogical and geochemical analyses.Our new data help us to figure out the transformation from original Mn-bearing deposits to supergene ores.The main minerals of original Mn-bearing dolomitic sandstones are quartz and feldspar,with minor muscovite,dolomite,rhodochrosite,ankerite,and kutnohorite.Supergene Mn-oxide ores only emerged in the middle part of the Longmen(LM)Section,and mainly contain quartz,pyrolusite,cryptomelane,todorokite and occasional dolomite.The possible transformation sequence of Mn minerals is:kutnohorite/rhodochrosite→pyrolusite(Ⅰ)→cryptomelane(todorokite)→todorokite(cryptomelane)→pyrolusite(Ⅱ).For Mn-oxide ores,Fe,Na and Si are enriched but Al,Ca,Mg and K are depleted with the enrichment of Mn.For original and supergene ores,the total rare earth element+ytterbium(∑REY)contents range from 105.68×10^(-6)to 250.56×10^(-6)and from 18.08×10^(-6)to 176.60×10^(-6),respectively.Original Mn ores have similar slightly LREE-enriched patterns,but the purer Mn-oxide ore shows a HREE-enriched pattern.In the middle part of the LM Section,positive Ce anomalies in Mn-oxide ores indicate the precipitation of Ce-bearing minerals.It implies the existence of geochemical barriers,which changed p H and Eh values due to the long-time influence of groundwater.展开更多
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ...Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.展开更多
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff...Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.展开更多
The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on ...The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.展开更多
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
The high-quality laminated source rock organic matter(OM)originated from planktonic algae,and its sedimentation was affected by global climate change significantly in the upper Xiaganchaigou Formation of the western Q...The high-quality laminated source rock organic matter(OM)originated from planktonic algae,and its sedimentation was affected by global climate change significantly in the upper Xiaganchaigou Formation of the western Qaidam Basin.However,coupling research on the paleoenvironment change and OM enrichment during the sedimentation period of the source rock is still lacking.This study from the aspects of sedimentary petrology,geochemistry and paleontology palynology,the paleoenvironment of source rock is restored and the OM enrichment model is established in the study area.Firstly,kerogen maceral identification indicates that the kerogen maceral is mainly composed of Botryococcus,accompanied with amorphous organic matter and plant debris.Secondly,arid climate and relatively active tectonic were observed during the deposition of the source rock.The water column was received felsic source from the continental island arc tectonic background,and has the environmental characteristics of relatively saline,shallow depth,medium low productivity,fast sedimentation rate and anoxic reduction and so on.Lastly,the first-order controlling factors for the OM enrichment are anoxic water conditions and suitable sedimentation rate,and the secondary controlling factor is paleoproductivity.Through the coupling study of paleoclimate,paleoenvironment and OM enrichment,the paleoclimate high frequency alternating evolution was the root cause of sedimentary environment change and OM enrichment of the laminated shale in the Upper Xiaganchaigou Formation.The study on the OM enrichment mechanism of algae in Qaidam provides a good model for understanding the coupling relationship between the algae bloom in the saline lake basins and the environments,and provides important theoretical basis for predicting shale oil“sweet spot”and production well sites arrangement for the continental saline lacustrine basins.展开更多
Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F...Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.展开更多
基金National Natural Science Foundation of China(52071274)Key Research and Development Projects of Shaanxi Province(2023-YBGY-442)Science and Technology Nova Project-Innovative Talent Promotion Program of Shaanxi Province(2020KJXX-062)。
文摘To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.
基金Supported by Wenzhou Science and Technology Bureau,No.Y20240207.
文摘Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.014000319/2018-00391.
文摘Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
基金Supported by the Sinopec Major Science and Technology Project(P22081)National Natural Science Foundation of China(U24B60001).
文摘The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
基金supported by the Natural Science Foundation of Hebei Province(Nos.D2019106042,D2020304038,and D2021106002)the National Natural Science Foundation of China(No.22276099)+1 种基金the State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex(No.2021080544)the Environmental Monitoring Research Foundation of Jiangsu Province(No.2211).
文摘VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Natural Science Foundation of China(32160681 and 32060663)the National Guidance Foundation for Local Science and Technology Development of China(2023-009)+1 种基金the Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]YB132)the Foundation of Postgraduate of Guizhou Province,China(YJSKYJJ[2021]057)。
文摘Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.
基金supported by the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.IGGCAS-201903).
文摘Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)formation and dissociation are still in controversy.In this study,montmorillonite and illite were separately mixed with quartz sand to investigate their effects on MH formation and dissociation.The microstructure of synthesized samples was observed by cryo-SEM innovatively to understand the effects of montmorillonite and illite on MH phase transition in micron scale.Results show that montmorillonite and illite both show the inhibition on MH formation kinetics and water-to-hydrate conversion,and illite shows a stronger inhibition.The 10 wt%montmorillonite addition significantly retards MH formation rate,and the 20 wt%montmorillonite has a less inhibition on the rate.The increase of illite mass ratio(0-20 wt%)retards the rate of MH formation.As the content of clay minerals increase,the water-to-hydrate conversion decreases.Cryo-SEM images presented that montmorillonite aggregates separate as individual clusters while illite particles pack as face-to-face configuration under the interaction with water.The surface-overlapped illite aggregates would make sediments pack tightly,hinder the contact between gas and water,and result in the more significant inhibition on MH formation kinetics.Under the depressurization method,the addition of clay minerals facilitates MH dissociation rate.Physicochemical properties of clay minerals and MH distribution in the pore space lead to the faster dissociation rate in clay-containing sediments.The results of this study would provide beneficial guides on geological investigations and optimizing strategies of natural gas production in marine hydrate-bearing sediments.
基金support extended by the Joint Funds of Beijing Municipal Natural Science Foundation and Fengtai Rail Transit Frontier Research(Grant No.L211006)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBXT010)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2023YJS052)the National Natural Science Foundation of China(Grant No.52308426)。
文摘Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42072178 and U2244207)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant No.QCJJ2022-37)Geological Survey Project of China Geological Survey(Grant Nos.DD20190114,DD20230022,and DD20240045)。
文摘Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.
基金supported by the National Key R&D Program of China(No.2022YFF0800200)the NSFC(Nos.U1812402 and 42072131)+6 种基金Most Special Fund(No.MSFGPMR33)from the State Key Laboratory of GPMRthe CUG Scholar Scientific Research Funds(No.2022036)the NSF of Hebei Province(No.D2021334001)Research Project of Talent Engineering Training of Hebei Province(No.B2020005007)Research Project of Postdoctoral Scientific Research Station of HBGMR(No.454-0602-YBN-Z9E4)Natural Science Foundation of Hebei Province(No.D2021334001)the Central Government Guides Local Funds for Scientific and Technological Development(No.236Z7608 G)。
文摘Original sedimentary manganese(Mn)deposits and supergene Mn ores are important Mn resources in China.However,the geochemical information from Chinese supergene Mn ores is scarce,and the relationship between sedimentary Mn deposits and supergene Mn ores is ambiguous.In this study,we collected the original Mn-bearing dolomitic sandstones(ZK20-3 drillcore)and supergene Mn ores(Longmen Section)from eastern Hebei,North China for systematic petrographic,mineralogical and geochemical analyses.Our new data help us to figure out the transformation from original Mn-bearing deposits to supergene ores.The main minerals of original Mn-bearing dolomitic sandstones are quartz and feldspar,with minor muscovite,dolomite,rhodochrosite,ankerite,and kutnohorite.Supergene Mn-oxide ores only emerged in the middle part of the Longmen(LM)Section,and mainly contain quartz,pyrolusite,cryptomelane,todorokite and occasional dolomite.The possible transformation sequence of Mn minerals is:kutnohorite/rhodochrosite→pyrolusite(Ⅰ)→cryptomelane(todorokite)→todorokite(cryptomelane)→pyrolusite(Ⅱ).For Mn-oxide ores,Fe,Na and Si are enriched but Al,Ca,Mg and K are depleted with the enrichment of Mn.For original and supergene ores,the total rare earth element+ytterbium(∑REY)contents range from 105.68×10^(-6)to 250.56×10^(-6)and from 18.08×10^(-6)to 176.60×10^(-6),respectively.Original Mn ores have similar slightly LREE-enriched patterns,but the purer Mn-oxide ore shows a HREE-enriched pattern.In the middle part of the LM Section,positive Ce anomalies in Mn-oxide ores indicate the precipitation of Ce-bearing minerals.It implies the existence of geochemical barriers,which changed p H and Eh values due to the long-time influence of groundwater.
基金supported by the National Key Research and Development Program of China (Nos.2022YFC3702000 and 2022YFC3703500)the Key R&D Project of Zhejiang Province (No.2022C03146).
文摘Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.
基金supported by the Chongqing Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0333)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202401205)+1 种基金Chongqing Three Gorges University Graduate Research and Innovation Project Funding(No.YJSKY24045)Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(No.SXAPGC24YB14,No.SXAPGC24YB03,No.SXAPGC24YB12)。
文摘Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.
基金funded by the National Natural Science Foundation of China(Grant Nos.41972313 and 41790453)the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University。
文摘The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.2024DJ8702)the Science and Technology Research Project of the China National Petroleum Corporation(No.2024DJ87)+1 种基金the National Natural Science Foundation of China(No.42272029)the“Light of West China”Program of the Chinese Academy of Sciences(No.xbzglzb2022025)。
文摘The high-quality laminated source rock organic matter(OM)originated from planktonic algae,and its sedimentation was affected by global climate change significantly in the upper Xiaganchaigou Formation of the western Qaidam Basin.However,coupling research on the paleoenvironment change and OM enrichment during the sedimentation period of the source rock is still lacking.This study from the aspects of sedimentary petrology,geochemistry and paleontology palynology,the paleoenvironment of source rock is restored and the OM enrichment model is established in the study area.Firstly,kerogen maceral identification indicates that the kerogen maceral is mainly composed of Botryococcus,accompanied with amorphous organic matter and plant debris.Secondly,arid climate and relatively active tectonic were observed during the deposition of the source rock.The water column was received felsic source from the continental island arc tectonic background,and has the environmental characteristics of relatively saline,shallow depth,medium low productivity,fast sedimentation rate and anoxic reduction and so on.Lastly,the first-order controlling factors for the OM enrichment are anoxic water conditions and suitable sedimentation rate,and the secondary controlling factor is paleoproductivity.Through the coupling study of paleoclimate,paleoenvironment and OM enrichment,the paleoclimate high frequency alternating evolution was the root cause of sedimentary environment change and OM enrichment of the laminated shale in the Upper Xiaganchaigou Formation.The study on the OM enrichment mechanism of algae in Qaidam provides a good model for understanding the coupling relationship between the algae bloom in the saline lake basins and the environments,and provides important theoretical basis for predicting shale oil“sweet spot”and production well sites arrangement for the continental saline lacustrine basins.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0710604)NSFC(Grant No.42374064).
文摘Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.