期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Dynamic Event-Triggered Active Disturbance Rejection Formation Control for Constrained Underactuated AUVs
1
作者 Zhiguang Feng Sibo Yao 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期460-462,共3页
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ... Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation. 展开更多
关键词 nonlinear state dependence function formation control problem constrained underactuated autonomous underwater vehicles constrained underactuated autonomous underwater vehicles virtual control law formation control
在线阅读 下载PDF
Recent Advancement in Formation Control of Multi-Agent Systems:A Review
2
作者 Aamir Farooq Zhengrong Xiang +1 位作者 Wen-Jer Chang Muhammad Shamrooz Aslam 《Computers, Materials & Continua》 2025年第6期3623-3674,共52页
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut... Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems. 展开更多
关键词 Cooperative control multi-agent systems formation control formation containment group formation bipartite formation
在线阅读 下载PDF
Distributed Finite-Time Formation Control of Multiple Mobile Robot Systems Without Global Information
3
作者 Xunhong Sun Haibo Du +1 位作者 Weile Chen Wenwu Zhu 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期630-632,共3页
Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir... Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature. 展开更多
关键词 estimate relative information mobile robot systems mmrs distributed control robot model finite time control directed graph follower robot formation control
在线阅读 下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:3
4
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
在线阅读 下载PDF
Distributed event-triggered formation control of UGV-UAV heterogeneous multi-agent systems for ground-air cooperation 被引量:1
5
作者 Hao XIONG Hongbin DENG +1 位作者 Chaoyang LIU Junqi WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期458-483,共26页
Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model ... Within the context of ground-air cooperation,the distributed formation trajectory tracking control problems for the Heterogeneous Multi-Agent Systems(HMASs)is studied.First,considering external disturbances and model uncertainties,a graph theory-based formation control protocol is designed for the HMASs consisting of Unmanned Aerial Vehicles(UAVs)and Unmanned Ground Vehicles(UGVs).Subsequently,a formation trajectory tracking control strategy employing adaptive Fractional-Order Sliding Mode Control(FOSMC)method is developed,and a Feedback Multilayer Fuzzy Neural Network(FMFNN)is introduced to estimate the lumped uncertainties.This approach empowers HMASs to adaptively follow the expected trajectory and adopt the designated formation configuration,even in the presence of various uncertainties.Additionally,an event-triggered mechanism is incorporated into the controller to reduce the update frequency of the controller and minimize the communication exchange among the agents,and the absence of Zeno behavior is rigorously demonstrated by an integral inequality analysis.Finally,to confirm the effectiveness of the proposed formation control protocol,some numerical simulations are presented. 展开更多
关键词 Distributed formation control Event-triggered control Heterogeneous multi-agent systems Fractional-order sliding mode control Feedback multilayer fuzzy neural network
原文传递
Safe formation control of multiple unmanned aerial vehicles:control design and safety-stability analysis
6
作者 Haoqi Li Jiangping Hu +1 位作者 Qingrui Zhou Bijoy K.Ghosh 《Control Theory and Technology》 EI CSCD 2024年第3期442-454,共13页
Both safety and stability are primary performance criteria for multi-unmanned aerial vehicle(multi-UAV)systems in many coordination tasks.Existing approaches often consider safety and stability separately.It is necess... Both safety and stability are primary performance criteria for multi-unmanned aerial vehicle(multi-UAV)systems in many coordination tasks.Existing approaches often consider safety and stability separately.It is necessary and urgent to develop a safety-stability control strategy to merge these two performance criteria.In this paper,a unified approach is developed to consider safety and stability for multi-UAV formation control.The stability criterion is represented by a Lyapunov function and safety criterion is represented by a barrier function and then a relaxed converse control Lyapunov-barrier theorem is obtained.With the help of a relaxed converse control Lyapunov-barrier function(RCCLBF),a distributed safety-stability formation control strategy is proposed for the multi-UAV system.By transforming the solution of RCCLBF to a Lyapunovlike stabilization problem,we show that the proposed formation control strategy can drive the UAVs staying within a specified safe set.Simulation results are provided to validate the proposed safety-stability formation control strategy. 展开更多
关键词 Multi-UAV system formation control Lyapunov function Barrier function Stability with safety guarantee
原文传递
Game theory based finite-time formation control using artificial potentials for tethered space net robot
7
作者 Yifeng MA Yizhai ZHANG +2 位作者 Panfeng HUANG Ya LIU Fan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期358-372,共15页
The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuve... The Tethered Space Net Robot(TSNR)is an innovative solution for active space debris capture and removal.Its large envelope and simple capture method make it an attractive option for this task.However,capturing maneuverable debris with the flexible and elastic underactuated net poses significant challenges.To address this,a novel formation control method for the TSNR is proposed through the integration of differential game theory and robust adaptive control in this paper.Specifically,the trajectory of the TSNR is obtained through the solution of a real-time feedback pursuit-evasion game with a dynamic target,where the primary condition is to ensure the stability of the TSNR.Furthermore,to minimize tracking errors and maintain a specific configuration,a robust adaptive formation control scheme with Artificial Potential Field(APF)based on a Finite-Time Convergent Extended State Observer(FTCESO)is investigated.The proposed control method has a key advantage in suppressing complex oscillations by a new adaptive law,thus precisely maintaining the configuration.Finally,numerical simulations are performed to demonstrate the effectiveness of the proposed scheme. 展开更多
关键词 Game theory formation control Artificial potential field Relative distance constraint Tethered space net robot(TSNR)
原文传递
Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks
8
作者 Kai Wang Wei Wu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第4期260-268,共9页
This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonl... This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme. 展开更多
关键词 Nonholonomic mobile robots Deception attacks Neural network(NN)estimation technique Secure formation control Event-triggered mechanism
在线阅读 下载PDF
Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs 被引量:29
9
作者 Zhihao CAI Longhong WANG +2 位作者 Jiang ZHAO Kun WU Yingxun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1037-1056,共20页
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is... The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method. 展开更多
关键词 Distributed Model Predictive control(MPC) Event-triggered mechanism formation control Obstacle avoidance Unmanned Aerial Vehicles(UAVs) Virtual Target Guidance(VTG)
原文传递
Adaptive formation control of quadrotor unmanned aerial vehicles with bounded control thrust 被引量:14
10
作者 Wang Rui Liu Jinkun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期807-817,共11页
In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the ... In this paper,the flight formation control problem of a group of quadrotor unmanned aerial vehicles(UAVs) with parametric uncertainties and external disturbances is studied.Unitquaternions are used to represent the attitudes of the quadrotor UAVs.Separating the model into a translational subsystem and a rotational subsystem,an intermediary control input is introduced to track a desired velocity and extract desired orientations.Then considering the internal parametric uncertainties and external disturbances of the quadrotor UAVs,the priori-bounded intermediary adaptive control input is designed for velocity tracking and formation keeping,by which the bounded control thrust and the desired orientation can be extracted.Thereafter,an adaptive control torque input is designed for the rotational subsystem to track the desired orientation.With the proposed control scheme,the desired velocity is tracked and a desired formation shape is built up.Global stability of the closed-loop system is proven via Lyapunov-based stability analysis.Numerical simulation results are presented to illustrate the effectiveness of the proposed control scheme. 展开更多
关键词 Adaptive control Bounded input formation control Parametric uncertainties Quadrotor UAV Unit-quaternions
原文传递
Cooperative Formation Control of Autonomous Underwater Vehicles:An Overview 被引量:22
11
作者 Bikramaditya Das Bidyadhar Subudhi Bibhuti Bhusan Pati 《International Journal of Automation and computing》 EI CSCD 2016年第3期199-225,共27页
Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperativ... Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots. 展开更多
关键词 Autonomous underwater vehicles (AUV) cooperative control formation control tracking control regulatory control.
原文传递
Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance 被引量:16
12
作者 Yang XU Delin LUO +2 位作者 Dongyu LI Yancheng YOU Haibin DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2679-2693,共15页
This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in... This paper addresses a target-enclosing problem for multiple spacecraft systems by proposing a two-layer affine formation control strategy. Compared with the existing methods,the adopted two-layer network structure in this paper is generally directed, which is suitable for practical space missions. Firstly, distributed finite-time sliding-mode estimators and formation controllers in both layers are designed separately to improve the flexibility of the formation control system. By introducing the properties of affine transformation into formation control protocol design,the controllers can be used to track different time-varying target formation patterns. Besides, multilayer time-varying encirclements can be achieved with particular shapes to surround the moving target. In the sequel, by integrating adaptive neural networks and specialized artificial potential functions into backstepping controllers, the problems of uncertain Euler-Lagrange models, collision avoidance as well as formation reconfiguration are solved simultaneously. The stability of the proposed controllers is verified by the Lyapunov direct method. Finally, two simulation examples of triangle formation and more complex hexagon formation are presented to illustrate the feasibility of the theoretical results. 展开更多
关键词 Affine formation control Collision avoidance Lyapunov stability Target enclosing Two-layer strategy
原文传递
Spatial-Temporal Distribution, Geological Characteristics and Ore-Formation Controlling Factors of Major Types of Rare Metal Mineral Deposits in China 被引量:12
13
作者 JIANG Shaoyong SU Huimin +3 位作者 XIONG Yiqu LIU Tao ZHU Kangyu ZHANG Lu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1757-1773,共17页
Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral dep... Rare metals including Lithium(Li),Beryllium(Be),Rubidium(Rb),Cesium(Cs),Zirconium(Zr),Hafnium(Hf),Niobium(Nb),Tantalum(Ta),Tungsten(W)and Tin(Sn)are important critical mineral resources.In China,rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt;in the Middle Qilian,South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt;in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt,and in the Northeastern Jiangxi,Northwestern Jiangxi,and Southern Hunan regions in South China.Major ore-forming epochs include Indosinian(mostly 200-240 Ma,in particular in western China)and the Yanshanian(mostly 120-160 Ma,in particular in South China).In addition,Bayan Obo,Inner Mongolia,northeastern China,with a complex formation history,hosts the largest REE and Nb deposits in China.There are six major rare metal mineral deposit types in China:Highly fractionated granite;Pegmatite;Alkaline granite;Carbonatite and alkaline rock;Volcanic;and Hydrothermal types.Two further types,namely the Leptynite type and Breccia pipe type,have recently been discovered in China,and are represented by the Yushishan Nb-Ta-(Zr-Hf-REE)and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits.Several most important controlling factors for rare metal mineral deposits are discussed,including geochemical behaviors and sources of the rare metals,highly evolved magmatic fractionation,and structural controls such as the metamorphic core complex setting,with a revised conceptual model for the latter. 展开更多
关键词 critical metals GEOCHEMISTRY rare metals distribution metal ores formation control factors China
在线阅读 下载PDF
Consensus tracking protocol and formation control of multi-agent systems with switching topology 被引量:13
14
作者 年晓红 苏赛军 潘欢 《Journal of Central South University》 SCIE EI CAS 2011年第4期1178-1183,共6页
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of... Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies. 展开更多
关键词 multi-agent system consensus protocols formation control switching topology
在线阅读 下载PDF
A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance 被引量:11
15
作者 Xiaohua Ge Qing-Long Han +1 位作者 Jun Wang Xian-Ming Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第6期990-1004,共15页
This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader v... This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach. 展开更多
关键词 Adaptive control collision avoidance distributed formation control multi-vehicle systems neural networks obstacle avoidance repulsive potential
在线阅读 下载PDF
Leader-following consensus protocols for formation control of multi-agent network 被引量:10
16
作者 Xiaoyuan Luo Nani Han Xinping Guan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期991-997,共7页
Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto... Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols. 展开更多
关键词 CONSENSUS formation control leader-following com-munication time-delay multi-agent systems.
在线阅读 下载PDF
Periodic event-triggered formation control for multi-UAV systems with collision avoidance 被引量:12
17
作者 Tong WU Jie WANG Bailing TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期193-203,共11页
In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)m... In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol. 展开更多
关键词 Collision avoidance Distributed formation control Event-triggered strategy Leader-follower method Multiple Unmanned Aerial Vehicles(UAVs)
原文传递
A Novel Multi-agent Formation Control Law With Collision Avoidance 被引量:9
18
作者 Arindam Mondal Laxmidhar Behera +1 位作者 Soumya Ranjan Sahoo Anupam Shukla 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期558-568,共11页
In this paper a stable formation control law that simultaneously ensures collision avoidance has been proposed.It is assumed that the communication graph is undirected and connected.The proposed formation control law ... In this paper a stable formation control law that simultaneously ensures collision avoidance has been proposed.It is assumed that the communication graph is undirected and connected.The proposed formation control law is a combination of the consensus term and the collision avoidance term(CAT).The first order consensus term is derived for the proposed model,while ensuring the Lyapunov stability.The consensus term creates and maintains the desired formation shape,while the CAT avoids the collision.During the collision avoidance,the potential function based CAT makes the agents repel from each other.This unrestricted repelling magnitude cannot ensure the graph connectivity at the time of collision avoidance.Hence we have proposed a formation control law,which ensures this connectivity even during the collision avoidance.This is achieved by the proposed novel adaptive potential function.The potential function adapts itself,with the online tuning of the critical variable associated with it.The tuning has been done based on the lower bound of the critical variable,which is derived from the proposed connectivity property.The efficacy of the proposed scheme has been validated using simulations done based on formations of six and thirty-two agents respectively. 展开更多
关键词 CONSENSUS collision avoidance formation control graph theory STABILITY
在线阅读 下载PDF
Distributed formation control for a multi-agent system with dynamic and static obstacle avoidances 被引量:9
19
作者 曹建福 凌志浩 +1 位作者 袁宜峰 高冲 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期337-342,共6页
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus... Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control. 展开更多
关键词 multi-agent system formation control obstacle avoidance consensus theory
原文传递
Behavior-based Autonomous Navigation and Formation Control of Mobile Robots in Unknown Cluttered Dynamic Environments with Dynamic Target Tracking 被引量:9
20
作者 Nacer Hacene Boubekeur Mendil 《International Journal of Automation and computing》 EI CSCD 2021年第5期766-786,共21页
While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous ... While different species in nature have safely solved the problem of navigation in a dynamic environment, this remains a challenging task for researchers around the world. The paper addresses the problem of autonomous navigation in an unknown dynamic environment for a single and a group of three wheeled omnidirectional mobile robots(TWOMRs). The robot has to track a dynamic target while avoiding dynamic obstacles and dynamic walls in an unknown and very dense environment. It adopts a behavior-based controller that consists of four behaviors: "target tracking", "obstacle avoidance", "dynamic wall following" and "avoid robots". The paper considers the problem of kinematic saturation. In addition, it introduces a strategy for predicting the velocity of dynamic obstacles based on two successive measurements of the ultrasonic sensors to calculate the velocity of the obstacle expressed in the sensor frame. Furthermore, the paper proposes a strategy to deal with dynamic walls even when they have U-like or V-like shapes. The approach can also deal with the formation control of a group of robots based on the leader-follower structure and the behavior-based control, where the robots have to get together and maintain a given formation while navigating toward the target, avoiding obstacles and walls in a dynamic environment. The effectiveness of the proposed approaches is demonstrated via simulation. 展开更多
关键词 Behavior-based autonomous navigation dynamic obstacles and walls dynamic target tracking formation control of multi-robot systems dynamic environment
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部