This study investigated the removal and transformation of organic matter through laboratory-scale soil-aquifer treatment (SAT) soil columns over a 110-day period. Reductions in total organic carbon (TOC), dissolved or...This study investigated the removal and transformation of organic matter through laboratory-scale soil-aquifer treatment (SAT) soil columns over a 110-day period. Reductions in total organic carbon (TOC), dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC), nonbiodegradable dissolved organic carbon (NBDOC) and absorbance of ul-traviolet light at 254 nm (UV-254) averaged 71.46%, 68.05%, 99.31%, 33.27% and 38.96% across the soil columns, respectively. DOC/TOC ratios increased slightly with depth while BDOC/DOC ratios showed a converse trend. DOC exiting the soil-column system contained only a very small biodegradable fraction. SAT decreased the concentration of DOC present in feed water but increased its aromaticity, as indicated by specific ultraviolet light absorbance (SUVA), which increased by 50%~115% across the soil columns, indicating preferential removal of non-aromatic DOC during SAT. Overall, laboratory-scale SAT reduced triha-lomethane formation potential (THMFP), although specific THMFP increased. THMFP reduction was dominated by removal in chloroform. All samples exhibited a common general relationship with respect to weight: chloroform>dichlorobromomethane >dibromochloromethane>bromoform.展开更多
1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial p...1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash展开更多
基金Project (No. 2004CB418505) supported by the National Basic Research Program (973) of China
文摘This study investigated the removal and transformation of organic matter through laboratory-scale soil-aquifer treatment (SAT) soil columns over a 110-day period. Reductions in total organic carbon (TOC), dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC), nonbiodegradable dissolved organic carbon (NBDOC) and absorbance of ul-traviolet light at 254 nm (UV-254) averaged 71.46%, 68.05%, 99.31%, 33.27% and 38.96% across the soil columns, respectively. DOC/TOC ratios increased slightly with depth while BDOC/DOC ratios showed a converse trend. DOC exiting the soil-column system contained only a very small biodegradable fraction. SAT decreased the concentration of DOC present in feed water but increased its aromaticity, as indicated by specific ultraviolet light absorbance (SUVA), which increased by 50%~115% across the soil columns, indicating preferential removal of non-aromatic DOC during SAT. Overall, laboratory-scale SAT reduced triha-lomethane formation potential (THMFP), although specific THMFP increased. THMFP reduction was dominated by removal in chloroform. All samples exhibited a common general relationship with respect to weight: chloroform>dichlorobromomethane >dibromochloromethane>bromoform.
基金supported by the (973) National Basic Research Program of China (2011CB403006)
文摘1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash