Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip...Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip-form system. The considered pylon has a height of 10 m and presents the rectangular hollow section generally adopted in cable-supported bridges. The slip-form was thus designed to accommodate the tapered cross-section and changing thickness considering the continuous placing of concrete. In addition, the safety of the system was examined with regard to the various loads applied on the slip form along the construction. The design results could be verified visually through BIM and the applicability of the designed slip-form was validated in advance through virtual assembly and construction.展开更多
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
Tailings produced by mining and ore smelting are a major source of soil pollution.Understanding the speciation of heavy metals(HMs)in tailings is essential for soil remediation and sustainable development.Given the co...Tailings produced by mining and ore smelting are a major source of soil pollution.Understanding the speciation of heavy metals(HMs)in tailings is essential for soil remediation and sustainable development.Given the complex and time-consuming nature of traditional sequential laboratory extraction methods for determining the forms of HMs in tailings,a rapid and precise identification approach is urgently required.To address this issue,a general empirical prediction method for HM occurrence was developed using machine learning(ML).The compositional information of the tailings,properties of the HMs,and sequential extraction steps were used as inputs to calculate the percentages of the seven forms of HMs.After the models were tuned and compared,extreme gradient boosting,gradient boosting decision tree,and categorical boosting methods were found to be the top three performing ML models,with the coefficient of determination(R^(2))values on the testing set exceeding 0.859.Feature importance analysis for these three optimal models indicated that electronegativity was the most important factor affecting the occurrence of HMs,with an average feature importance of 0.4522.The subsequent use of stacking as a model integration method enabled the ability of the ML models to predict HM occurrence forms to be further improved,and resulting in an increase of R^(2) to 0.879.Overall,this study developed a robust technique for predicting the occurrence forms in tailings and provides an important reference for the environmental assessment and recycling of tailings.展开更多
Theoretical education and practical education are very important in clinical laboratory teaching.The teaching evaluation system is one of the important means to test the quality of course teaching.The traditional summ...Theoretical education and practical education are very important in clinical laboratory teaching.The teaching evaluation system is one of the important means to test the quality of course teaching.The traditional summative evaluation needs to be improved in terms of scientificity and impartiality,and its guiding effect on teaching reform is limited.Therefore,this paper proposes to apply formative evaluation to clinical laboratory teaching to remobilize students'learning enthusiasm and provide valuable guidance for the subsequent teaching reform,hoping to achieve the purpose of improving the quality of laboratory teaching.展开更多
Economic globalization is a process of forming a global market under the conditions of technological progress and national opening-up.Influenced by factors such as national policies,the international environment and g...Economic globalization is a process of forming a global market under the conditions of technological progress and national opening-up.Influenced by factors such as national policies,the international environment and geopolitics,the values,concepts and choices of the participants of globalization will change accordingly,thus affecting the mode,scale and speed of globalization.展开更多
Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio...Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.展开更多
Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmen...Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.展开更多
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca...A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.展开更多
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a...The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the resu...We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .展开更多
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l...To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.展开更多
Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)at...Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.展开更多
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r...Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.展开更多
Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser m...Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser melting.Their forming quality,compression mechanical properties,and degradation behavior were investigated.Results indicate that the fabricated scaffolds exhibit good dimensional accuracy,and the surface chemical polishing treatment significantly improves the forming quality and reduces porosity error in porous scaffolds.Compared to the ones with rod structures(bcc,RD),the scaffolds with surface structures(G,P)have less powder particle adhesion.The G porous scaffold exhibits the best forming quality for the same design porosity.The predominant failure mode of scaffolds during compression is a 45°shear fracture.At a porosity of 75%,the compression property of all scaffolds meets the compressive property requirements of cancellous bone,while bcc and G structures show relatively better compression property.After immersion in Hank's solution for 168 h,the B-2-75% pore structure scaffold exhibits severe localized corrosion,with fractures in partial pillar connections.In contrast,the G-3-75% pore structure scaffold mainly undergoes uniform corrosion,maintaining structural integrity,and its corrosion rate and loss of compressive properties are less than those of the B-2-75%structure.After comparison,the G-pore structure scaffold is preferred.展开更多
Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomi...Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.展开更多
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius...In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles.展开更多
文摘Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip-form system. The considered pylon has a height of 10 m and presents the rectangular hollow section generally adopted in cable-supported bridges. The slip-form was thus designed to accommodate the tapered cross-section and changing thickness considering the continuous placing of concrete. In addition, the safety of the system was examined with regard to the various loads applied on the slip form along the construction. The design results could be verified visually through BIM and the applicability of the designed slip-form was validated in advance through virtual assembly and construction.
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
基金financially supported by the Natural Science Foundation of Hunan Province,China(No.2024JJ2074)the National Natural Science Foundation of China(No.22376221)the Young Elite Scientists Sponsorship Program by CAST,China(No.2023QNRC001).
文摘Tailings produced by mining and ore smelting are a major source of soil pollution.Understanding the speciation of heavy metals(HMs)in tailings is essential for soil remediation and sustainable development.Given the complex and time-consuming nature of traditional sequential laboratory extraction methods for determining the forms of HMs in tailings,a rapid and precise identification approach is urgently required.To address this issue,a general empirical prediction method for HM occurrence was developed using machine learning(ML).The compositional information of the tailings,properties of the HMs,and sequential extraction steps were used as inputs to calculate the percentages of the seven forms of HMs.After the models were tuned and compared,extreme gradient boosting,gradient boosting decision tree,and categorical boosting methods were found to be the top three performing ML models,with the coefficient of determination(R^(2))values on the testing set exceeding 0.859.Feature importance analysis for these three optimal models indicated that electronegativity was the most important factor affecting the occurrence of HMs,with an average feature importance of 0.4522.The subsequent use of stacking as a model integration method enabled the ability of the ML models to predict HM occurrence forms to be further improved,and resulting in an increase of R^(2) to 0.879.Overall,this study developed a robust technique for predicting the occurrence forms in tailings and provides an important reference for the environmental assessment and recycling of tailings.
文摘Theoretical education and practical education are very important in clinical laboratory teaching.The teaching evaluation system is one of the important means to test the quality of course teaching.The traditional summative evaluation needs to be improved in terms of scientificity and impartiality,and its guiding effect on teaching reform is limited.Therefore,this paper proposes to apply formative evaluation to clinical laboratory teaching to remobilize students'learning enthusiasm and provide valuable guidance for the subsequent teaching reform,hoping to achieve the purpose of improving the quality of laboratory teaching.
文摘Economic globalization is a process of forming a global market under the conditions of technological progress and national opening-up.Influenced by factors such as national policies,the international environment and geopolitics,the values,concepts and choices of the participants of globalization will change accordingly,thus affecting the mode,scale and speed of globalization.
基金Key Research and Development Program of Shaanxi Province(2022GY-410)Funding of Western Titanium Technologies Co.,Ltd(WX2210)。
文摘Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.
基金supported by the National Key Research and Development Program of China(2023YFF0805602)National Natural Science Foundation of China(32225032,32001192,32271597)+1 种基金the Innovation Base Project of Gansu Province(2021YFF0703904)the Science and Technology Program of Gansu Province(24JRRA515,22JR5RA525,23JRRA1157).
文摘Studies on plant diversity are usually based on the total number of species in a community.However,few studies have examined species richness(SR)of different plant life forms in a community along largescale environmental gradients.Particularly,the relative importance(RIV)of different plant life forms in a community and how they vary with environmental variables are still unclear.To fill these gaps,we determined plant diversity of ephemeral plants,annual herbs,perennial herbs,and woody plants from 187 sites across drylands in China.The SR patterns of herbaceous plants,especially perennial herbs,and their RIV in plant communities increased with increasing precipitation and soil nutrient content;however,the RIV of annual herbs was not altered along these gradients.The SR and RIV of ephemeral plants were affected mainly by precipitation seasonality.The SR of woody plants had a unimodal relationship with air temperature and exhibited the highest RIV and SR percentage in plant communities under the harshest environments.An obvious shift emerged in plant community composition,SR and their critical impact factors at 238.5 mm of mean annual precipitation(MAP).In mesic regions(>238.5 mm),herbs were the dominant species,and the SR displayed a relatively slow decreasing rate with increasing aridity,which was mediated mainly by MAP and soil nutrients.In arid regions(<238.5 mm),woody plants were the dominant species,and the SR displayed a relatively fast decreasing rate with increasing aridity,which was mediated mainly by climate variables,especially precipitation.Our findings highlight the importance of comparative life form studies in community structure and biodiversity,as their responses to gradients differed substantially on a large scale.
基金supported in part by financial support from the National Key R&D Program of China(No.2023YFB3407003)the National Natural Science Foundation of China(No.52375378).
文摘A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U1906233 and 52201312)Dalian High-Level Talent Innovation Program(Grant No.2021RD16)the Natural Science Foundation of Liaoning Province of China(Grant No.2023-BSBA-052).
文摘The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
文摘We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+1 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)。
文摘To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.
文摘Let f be a primitive holomorphic cusp form with even integral weight k≥2 for the full modular groupΓ=SL(2,Z)andλ_(sym^(j)f)(n)be the n-th coefficient of Dirichlet series of j-th symmetric L-function L(s,sym^(j)f)attached to f.In this paper,we study the mean value distribution over a specific sparse sequence of positive integers of the following sum∑(a^(2)+b^(2)+c^(2)+d^(2)≤x(a,b,c,d)∈Z^(4))λ_(sym^(j))^(i)f(a^(2)+b^(2)+c^(2)+d^(2))where j≥2 is a given positive integer,i=2,3,4 andαis sufficiently large.We utilize Python programming to design algorithms for higher power conditions,combining Perron's formula,latest results of representations of natural integers as sums of squares,as well as analytic properties and subconvexity and convexity bounds of automorphic L-functions,to ensure the accuracy and verifiability of asymptotic formulas.The conclusion we obtained improves previous results and extends them to a more general settings.
基金National Key Research and Development Program(2021YFB3401101)。
文摘Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.
基金Science and Technology Planning Project of Inner Mongolia Science and Technology Department(2022YFSH0021)Key Research and Development Program of Shaanxi Province(2024SF2-GJHX-14,2021SF-296)。
文摘Four types of Mg-5Zn porous scaffolds with different pore geometries,including body-centered cubic(bcc),the rhombic dodecahedron(RD),gyroid(G),and primitive(P)types,were designed and fabricated using selective laser melting.Their forming quality,compression mechanical properties,and degradation behavior were investigated.Results indicate that the fabricated scaffolds exhibit good dimensional accuracy,and the surface chemical polishing treatment significantly improves the forming quality and reduces porosity error in porous scaffolds.Compared to the ones with rod structures(bcc,RD),the scaffolds with surface structures(G,P)have less powder particle adhesion.The G porous scaffold exhibits the best forming quality for the same design porosity.The predominant failure mode of scaffolds during compression is a 45°shear fracture.At a porosity of 75%,the compression property of all scaffolds meets the compressive property requirements of cancellous bone,while bcc and G structures show relatively better compression property.After immersion in Hank's solution for 168 h,the B-2-75% pore structure scaffold exhibits severe localized corrosion,with fractures in partial pillar connections.In contrast,the G-3-75% pore structure scaffold mainly undergoes uniform corrosion,maintaining structural integrity,and its corrosion rate and loss of compressive properties are less than those of the B-2-75%structure.After comparison,the G-pore structure scaffold is preferred.
基金Supported in part by the Natural Science Foundation of Henan Youth Foundation(Grant No.222300420034)National Natural Science Foundation of China(Grant No.11871193).
文摘Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875122,12175025,and 12147102)Tongling University Talent Program(Grant No.R23100)。
文摘In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles.