In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius...In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles.展开更多
We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pio...We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pion within the frame work of hadronic operator. To achieve this, we consider a slightly deformed curve deviating from a straight line and construct a set of differential equations by comparing them to the equation determining charged pion wave function in a straight line case. By solving these equations, we employ the Fourier transform of these wave functions.展开更多
We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the resu...We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .展开更多
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low...The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.展开更多
Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields...Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields of the ships at different scales were solved numerically via the Reynolds-averaged Navier–Stokes method combined with the shear stress transport k–ωturbulence model.The numerical method was validated through comparisons with experimental data,and numerical uncertainty analysis was carried out based on the ITTC recommended procedure.On this basis,scale effects of the form factor were analyzed using different friction lines,and scale effects of flow fields and the mean axial wake fractions were further analyzed in details.The results showed that the form factor exhibited scale effects when adopting the ITTC-1957 line,and it increased with the increase in the Reynolds number.The scale effect of the form factor reduces the prediction precision of the full-scale ship resistance.The friction line has a significant effect on the form factor.The form factor exhibits little dependence on the Reynolds number when using the numerical friction line or the Katsui line,which is useful for full-scale ship resistance predictions.With the increasing Reynolds number,the boundary layer thickness becomes thinner and the axial velocity contour contracts toward the center plane,and there is nearly a linear relationship between the reciprocal of mean axial wake fraction on propeller disc and Reynolds number in logarithmic scale for the three types of ship forms.展开更多
Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is ...Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.展开更多
We study the duality between color and kinematics for the Sudakov form factors of tr(F~2)in non-supersymmetric pure Yang-Mills theory.We construct the integrands that manifest the color-kinematics duality up to two lo...We study the duality between color and kinematics for the Sudakov form factors of tr(F~2)in non-supersymmetric pure Yang-Mills theory.We construct the integrands that manifest the color-kinematics duality up to two loops.The resulting numerators are given in terms of Lorentz products of momenta and polarization vectors,which have the same powers of loop momenta as that from the Feynman rules.The integrands are checked by d-dimensional unitarity cuts and are valid in any dimension.We find that massless-bubble and tadpole topologies are needed at two loops to realize the color-kinematics duality.Interestingly,the two-loop solution contains a large number of free parameters suggesting the duality may hold at higher loop orders.展开更多
In the paper, we apply the kT factorization approach to deal with the B8 → fofo(980) transition form factors in the large recoil regions, i.e. the small q2 regions. For the purpose, we adopt the B-meson wave-functi...In the paper, we apply the kT factorization approach to deal with the B8 → fofo(980) transition form factors in the large recoil regions, i.e. the small q2 regions. For the purpose, we adopt the B-meson wave-functions ЖB, ЖB and that include the three-Fock states contributions to do our discussion. Although the scalar meson fo(980) is widely perceived as the 4-quark bound state (scenario 2), but the distribution amplitudes of 4-quark states are still unknown to us, so we adopt 2-quark model (scenario 1) for scalar meson fo(980) in our discussion. By varying the B-meson wave-function parameters within their reasonable regions, we obtain Fo(0) = F+(0) = 0.20 ± 0.02, FT(O) = 0.24 4± 0.02. Our present results for these form factors are consistent with the light-cone sum rule results obtained in the literature.展开更多
The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquar...The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark. The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.展开更多
In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors whi...In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.展开更多
We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form...We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.展开更多
Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars ...Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.展开更多
Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributi...Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.展开更多
We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the ...We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the pion cloud contributes substantially to the nucleon form factors as well as to the helicity amplitudes of △(1232), and it gives an improved agreement compared to the experimental.展开更多
Based on the recent measurements of the e^(+)e^(-)→∑^(+)∑^(-)^(-)and e^(+)e^(-)→∑^(-)∑^(-)^(+)processes by the Beijing SpectrometerⅢ(BESⅢ)collaboration,the electromagnetic form factors of the hyperon Σ^(+) a...Based on the recent measurements of the e^(+)e^(-)→∑^(+)∑^(-)^(-)and e^(+)e^(-)→∑^(-)∑^(-)^(+)processes by the Beijing SpectrometerⅢ(BESⅢ)collaboration,the electromagnetic form factors of the hyperon Σ^(+) and Σ^(-) in the timelike region are investigated using the vector-meson dominance model,where the contributions of theρ,ω,and φ mesons are taken into account.The model parameters are determined from the BESⅢexperimental data of the timelike effective form factors|G_(eff)|of the Σ^(+) and Σ^(-) baryons for center-of-mass energies from 2.3864 to 3.02 GeV.It is found that we can provide quantitative descriptions of the available data using as few as one adjustable model parameter.We then progress to an analysis of the electromagnetic form factors in the spacelike region and evaluate the spacelike form factors of the hyperons Σ^(+) and Σ^(-).The electromagnetic form factors obtained for the Σ^(+) and Σ^(-) baryons are comparable with those of other model calculations.展开更多
Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame w...Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.展开更多
The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational flu...The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational fluid dynamics( CFD) method is proposed to estimate the form factor of high-speed catamaran with asymmetrical hulls. This paper focused on a 2000-toners catamaran with asymmetrical hulls to compare the difference between normal method and CFD method. The resistance of this catamaran is calculated by the CFD method,and it was compared to the model test data to verify the validity of this method. The form factors calculated by CFD method are very different from the results calculated by Prohaska method in high speed area.Thus,the method used to estimate the form factor of low-speed vessel is not applicative for high-speed catamaran. It is more accurate and efficient when using the CFD method to estimate the form factor of high-speed catamaran with asymmetrical hulls.展开更多
An extrapolation to the physical limit for the lattice data of Λ_b →Λ_c form factors computed in the nonphysical region is made in this work through a class of fitting functions proposed by us with nonlinear depend...An extrapolation to the physical limit for the lattice data of Λ_b →Λ_c form factors computed in the nonphysical region is made in this work through a class of fitting functions proposed by us with nonlinear dependence on m2/π derived in the chiral perturbative theory(ChPT) and the heavy quark effective theory(HQET) framework. Then the results are applied to calculate the differential and integrated Λ_b →Λ_c semileptonic decay rates. Meanwhile, a comparison between our results and those obtained through the extrapolation functions with naive linear dependenceon m2/π is made.It is shown that the difference between the extrapolated central values of these two cases is about 5%.The total uncertainties(depending on the momentum transfer q^2) in the linear case are about 5% ~10%(caused by the uncertainties of lattice data) and those in the nonlinear case are about 10% ~ 20%(caused by the uncertainties of both lattice data and input parameters in Ch PT and HQET). More accurate lattice data and parameters in ChPT and HQET are needed to reduce the uncertainties of the extrapolated results.展开更多
We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot ...We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot tell the number of composing quarks anymore. Because we use the derived pion wave function to describe a nucleon, our description has automatically the pionic degree of freedom and can be compared to the constituent quark model. Using this description, we investigate the electric charge and magnetization density functions of protons and neutrons. The electric charge density function of neutron is quite similar to those of Galster model and Maints data except the magnitude of singularity. The density functions of proton also show the similar behavior as those of Kelly’s except near origin. Taking the Fourier transform of the density functions, we obtain the Sachs electromagnetic form factors that can be compared to those in the parametrization derived by Ye et al.展开更多
Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nan...Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nanofluids taking account of the volume fraction φ. The Navier-Stokes equations are solved numerically by alternating an implicit method (Method ADI) for various Rayleigh numbers varies as 103, 104 and 105. The nanofluid used is aluminum oxide with water Pr = 6.2;solid volume fraction φ is varied as 0%, 5% and 10%. Inclination angle Φ varies from 0° to 90° with a step the 15° and the form report varies as R = 0.25, 0.5, 1 and 4. The problem considered is a two-dimensional heat transfer enclosure. The vertical walls are differentially heated;the right is cold when the left is hot. The horizontal walls are assumed to be insulated. The nanofluid in the cavity is considered as incompressible, Newtonian and laminar flow. The nanoparticles are assumed to have a shape and a uniform size. However, it is supposed that the two fluid phases and nanoparticles are in a state of thermal equilibrium and they sink at the same speed. The thermophysical properties of nanofluids are assumed to be constant at the exception of the variation of density in the force of buoyancy, which is based on the approximation of Boussinesq values.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11875122,12175025,and 12147102)Tongling University Talent Program(Grant No.R23100)。
文摘In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles.
文摘We estimate the electromagnetic form factor of the transverse part of cross section σTand provide a correction for the electromagnetic form factor of the longitudinal component of cross section σLfor the charged pion within the frame work of hadronic operator. To achieve this, we consider a slightly deformed curve deviating from a straight line and construct a set of differential equations by comparing them to the equation determining charged pion wave function in a straight line case. By solving these equations, we employ the Fourier transform of these wave functions.
文摘We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .
基金Supported by Ministry of Industry and Information(No.K24097)
文摘The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
基金financially supported by the National Natural Science Foundation of China(Grant No.51809273)。
文摘Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields of the ships at different scales were solved numerically via the Reynolds-averaged Navier–Stokes method combined with the shear stress transport k–ωturbulence model.The numerical method was validated through comparisons with experimental data,and numerical uncertainty analysis was carried out based on the ITTC recommended procedure.On this basis,scale effects of the form factor were analyzed using different friction lines,and scale effects of flow fields and the mean axial wake fractions were further analyzed in details.The results showed that the form factor exhibited scale effects when adopting the ITTC-1957 line,and it increased with the increase in the Reynolds number.The scale effect of the form factor reduces the prediction precision of the full-scale ship resistance.The friction line has a significant effect on the form factor.The form factor exhibits little dependence on the Reynolds number when using the numerical friction line or the Katsui line,which is useful for full-scale ship resistance predictions.With the increasing Reynolds number,the boundary layer thickness becomes thinner and the axial velocity contour contracts toward the center plane,and there is nearly a linear relationship between the reciprocal of mean axial wake fraction on propeller disc and Reynolds number in logarithmic scale for the three types of ship forms.
基金The second author was supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2219 International Postdoctoral Research Fellowship Program。
文摘Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.
基金supported in part by the National Natural Science Foundation of China(Grants No.12175291,11935013,11822508,12047503)by the Key Research Program of the Chinese Academy of Sciences,Grant NO.XDPB15。
文摘We study the duality between color and kinematics for the Sudakov form factors of tr(F~2)in non-supersymmetric pure Yang-Mills theory.We construct the integrands that manifest the color-kinematics duality up to two loops.The resulting numerators are given in terms of Lorentz products of momenta and polarization vectors,which have the same powers of loop momenta as that from the Feynman rules.The integrands are checked by d-dimensional unitarity cuts and are valid in any dimension.We find that massless-bubble and tadpole topologies are needed at two loops to realize the color-kinematics duality.Interestingly,the two-loop solution contains a large number of free parameters suggesting the duality may hold at higher loop orders.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.CDJZR10100023
文摘In the paper, we apply the kT factorization approach to deal with the B8 → fofo(980) transition form factors in the large recoil regions, i.e. the small q2 regions. For the purpose, we adopt the B-meson wave-functions ЖB, ЖB and that include the three-Fock states contributions to do our discussion. Although the scalar meson fo(980) is widely perceived as the 4-quark bound state (scenario 2), but the distribution amplitudes of 4-quark states are still unknown to us, so we adopt 2-quark model (scenario 1) for scalar meson fo(980) in our discussion. By varying the B-meson wave-function parameters within their reasonable regions, we obtain Fo(0) = F+(0) = 0.20 ± 0.02, FT(O) = 0.24 4± 0.02. Our present results for these form factors are consistent with the light-cone sum rule results obtained in the literature.
基金The project supported by the Natural Science Foundation of Hebei Province of China under Grant No. A2005000535
文摘The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark. The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.
基金Supported by the National Natural Science Foundation of China under Grant No.11075079
文摘In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.
文摘We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.
基金Supported by the National Natural Science Foundation of China(31271658)National Key Research and Development Program of China(2016YFD0300306)
文摘Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.
基金The project supported by the Science Foundation of Chinese Academy of Engineering Physics under Contract No.42103 and for Research Doctor Subsidizes (2001)
文摘Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475088 and 90103020, the CAS Knowledge Innovation Project under Grant No. KC2-SW-N02, and the Institute of Theoretical Physics The support from the Center of Theoretical Nuclear Physics, Lanzhou National Laboratory of Heavy Ion Accelerator is appreciated. 0ne of authors (Y.B. Dong) thanks the Department of Physics, Genova University for the hospitality. Authors are grateful to the discussions with M.M. Giannini and Santopinto.
文摘We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the pion cloud contributes substantially to the nucleon form factors as well as to the helicity amplitudes of △(1232), and it gives an improved agreement compared to the experimental.
基金partly supported by the National Natural Science Foundation of China under Grant Nos.12075288,11735003,and 11961141012。
文摘Based on the recent measurements of the e^(+)e^(-)→∑^(+)∑^(-)^(-)and e^(+)e^(-)→∑^(-)∑^(-)^(+)processes by the Beijing SpectrometerⅢ(BESⅢ)collaboration,the electromagnetic form factors of the hyperon Σ^(+) and Σ^(-) in the timelike region are investigated using the vector-meson dominance model,where the contributions of theρ,ω,and φ mesons are taken into account.The model parameters are determined from the BESⅢexperimental data of the timelike effective form factors|G_(eff)|of the Σ^(+) and Σ^(-) baryons for center-of-mass energies from 2.3864 to 3.02 GeV.It is found that we can provide quantitative descriptions of the available data using as few as one adjustable model parameter.We then progress to an analysis of the electromagnetic form factors in the spacelike region and evaluate the spacelike form factors of the hyperons Σ^(+) and Σ^(-).The electromagnetic form factors obtained for the Σ^(+) and Σ^(-) baryons are comparable with those of other model calculations.
文摘Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.
基金Sponsored by the National Basic Research Program of China(Grant No.2013CB036103)the Self Research Project of State Key Laboratory of Ocean Engineering:Piercing Pentamaran Advanced Research and Conceptual Design(Grant No.GKZD010056-1)
文摘The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational fluid dynamics( CFD) method is proposed to estimate the form factor of high-speed catamaran with asymmetrical hulls. This paper focused on a 2000-toners catamaran with asymmetrical hulls to compare the difference between normal method and CFD method. The resistance of this catamaran is calculated by the CFD method,and it was compared to the model test data to verify the validity of this method. The form factors calculated by CFD method are very different from the results calculated by Prohaska method in high speed area.Thus,the method used to estimate the form factor of low-speed vessel is not applicative for high-speed catamaran. It is more accurate and efficient when using the CFD method to estimate the form factor of high-speed catamaran with asymmetrical hulls.
基金Supported by National Natural Science Foundation of China under Grant Nos.11775024 and 11575023
文摘An extrapolation to the physical limit for the lattice data of Λ_b →Λ_c form factors computed in the nonphysical region is made in this work through a class of fitting functions proposed by us with nonlinear dependence on m2/π derived in the chiral perturbative theory(ChPT) and the heavy quark effective theory(HQET) framework. Then the results are applied to calculate the differential and integrated Λ_b →Λ_c semileptonic decay rates. Meanwhile, a comparison between our results and those obtained through the extrapolation functions with naive linear dependenceon m2/π is made.It is shown that the difference between the extrapolated central values of these two cases is about 5%.The total uncertainties(depending on the momentum transfer q^2) in the linear case are about 5% ~10%(caused by the uncertainties of lattice data) and those in the nonlinear case are about 10% ~ 20%(caused by the uncertainties of both lattice data and input parameters in Ch PT and HQET). More accurate lattice data and parameters in ChPT and HQET are needed to reduce the uncertainties of the extrapolated results.
文摘We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot tell the number of composing quarks anymore. Because we use the derived pion wave function to describe a nucleon, our description has automatically the pionic degree of freedom and can be compared to the constituent quark model. Using this description, we investigate the electric charge and magnetization density functions of protons and neutrons. The electric charge density function of neutron is quite similar to those of Galster model and Maints data except the magnitude of singularity. The density functions of proton also show the similar behavior as those of Kelly’s except near origin. Taking the Fourier transform of the density functions, we obtain the Sachs electromagnetic form factors that can be compared to those in the parametrization derived by Ye et al.
文摘Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nanofluids taking account of the volume fraction φ. The Navier-Stokes equations are solved numerically by alternating an implicit method (Method ADI) for various Rayleigh numbers varies as 103, 104 and 105. The nanofluid used is aluminum oxide with water Pr = 6.2;solid volume fraction φ is varied as 0%, 5% and 10%. Inclination angle Φ varies from 0° to 90° with a step the 15° and the form report varies as R = 0.25, 0.5, 1 and 4. The problem considered is a two-dimensional heat transfer enclosure. The vertical walls are differentially heated;the right is cold when the left is hot. The horizontal walls are assumed to be insulated. The nanofluid in the cavity is considered as incompressible, Newtonian and laminar flow. The nanoparticles are assumed to have a shape and a uniform size. However, it is supposed that the two fluid phases and nanoparticles are in a state of thermal equilibrium and they sink at the same speed. The thermophysical properties of nanofluids are assumed to be constant at the exception of the variation of density in the force of buoyancy, which is based on the approximation of Boussinesq values.