The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this...The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.展开更多
To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to e...To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to estimate the output error model parameters and time delay simultaneously. An extended observation vector is constructed to establish an ILS identification algorithm. Moreover, a variable forgetting factor is introduced to enhance the convergence rate of parameter estimation. For consistent estimation, an instrumental variable method is given to deal with the colored noise. The convergence and upper bound error of parameter estimation are analyzed. Two illustrative examples are used to show the effectiveness and merits of the proposed method.展开更多
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
文摘The quarter model of an active suspension is established in the form of controllable autoregressive moving average (CARMA) model. An accelerometer can be mounted on the wheel hub for measuring road disturbance; this signal is used to identify the CARMA model parameters by recursive forgetting factors least square method. The linear quadratic integral (LQI) control method for the active suspension is presented. The LQI control algorithm is fit for vehicle suspension control, for the control performance index can comprise multi controlled variables. The simulation results show that the vertical acceleration and suspension travel both are decreased with the LQI control in the low frequency band, and the suspension travel is increased with the LQI control in the middle or high frequency band. The suspension travel is very small in the middle or high frequency band, the suspension bottoming stop will not happen, so the vehicle ride quality can be improved apparently by the LQI control.
基金Supported by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to estimate the output error model parameters and time delay simultaneously. An extended observation vector is constructed to establish an ILS identification algorithm. Moreover, a variable forgetting factor is introduced to enhance the convergence rate of parameter estimation. For consistent estimation, an instrumental variable method is given to deal with the colored noise. The convergence and upper bound error of parameter estimation are analyzed. Two illustrative examples are used to show the effectiveness and merits of the proposed method.