期刊文献+
共找到4,770篇文章
< 1 2 239 >
每页显示 20 50 100
Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction
1
作者 Abeer Alnuaim 《Computers, Materials & Continua》 2026年第1期711-743,共33页
The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)... The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats.In the evolving landscape of cybersecurity,the efficacy of Intrusion Detection Systems(IDS)is increasingly measured by technical performance,operational usability,and adaptability.This study introduces and rigorously evaluates a Human-Computer Interaction(HCI)-Integrated IDS with the utilization of Convolutional Neural Network(CNN),CNN-Long Short Term Memory(LSTM),and Random Forest(RF)against both a Baseline Machine Learning(ML)and a Traditional IDS model,through an extensive experimental framework encompassing many performance metrics,including detection latency,accuracy,alert prioritization,classification errors,system throughput,usability,ROC-AUC,precision-recall,confusion matrix analysis,and statistical accuracy measures.Our findings consistently demonstrate the superiority of the HCI-Integrated approach utilizing three major datasets(CICIDS 2017,KDD Cup 1999,and UNSW-NB15).Experimental results indicate that the HCI-Integrated model outperforms its counterparts,achieving an AUC-ROC of 0.99,a precision of 0.93,and a recall of 0.96,while maintaining the lowest false positive rate(0.03)and the fastest detection time(~1.5 s).These findings validate the efficacy of incorporating HCI to enhance anomaly detection capabilities,improve responsiveness,and reduce alert fatigue in critical smart city applications.It achieves markedly lower detection times,higher accuracy across all threat categories,reduced false positive and false negative rates,and enhanced system throughput under concurrent load conditions.The HCIIntegrated IDS excels in alert contextualization and prioritization,offering more actionable insights while minimizing analyst fatigue.Usability feedback underscores increased analyst confidence and operational clarity,reinforcing the importance of user-centered design.These results collectively position the HCI-Integrated IDS as a highly effective,scalable,and human-aligned solution for modern threat detection environments. 展开更多
关键词 Anomaly detection smart cities Internet of Things(IoT) HCI CNN LSTM random forest intelligent secure solutions
在线阅读 下载PDF
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
2
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
Cettiny Lost in Arxan's Winter Landscape
3
作者 《Women of China》 2026年第1期60-63,共4页
When you hear about boundless grasslands,vast forests,stunning snowy landscapes,bubbling hot springs and cultural integration,do you ever consider they are descriptions-features actually-of one place?They are,believe ... When you hear about boundless grasslands,vast forests,stunning snowy landscapes,bubbling hot springs and cultural integration,do you ever consider they are descriptions-features actually-of one place?They are,believe it or not.Arxan,a tiny city in Hinggan League,North China's Inner Mongolia Autonomous Region,is that magical place.In recent years,Arxan,a hidden gem boasting breathtaking winter landscape,has captivated visitors seeking to enjoy a“pure-white,fairy-tale world.” 展开更多
关键词 boundless grasslands cultural integrationdo Hinggan League bubbling hot springs Inner Mongolia Autonomous Region vast forests stunning snowy landscapes Arxan
原文传递
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
4
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
A rapid transition from spruce-fir to pine-broadleaf forests in response to disturbances and climate warming on the southeastern Qinghai-Tibet Plateau 被引量:3
5
作者 Lin Zhang Xiao-Ming Lu +6 位作者 Hua-Zhong Zhu Shan Gao Jian Sun Hai-Feng Zhu Jiang-Ping Fang J.Julio Camarero Er-Yuan Liang 《Plant Diversity》 2025年第6期876-882,共7页
A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as ... A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes. 展开更多
关键词 Adaptive forest management Disturbance Subalpine forest Biomass Spruce-fir forest The Qinghai-Tibet Plateau
在线阅读 下载PDF
Spatio-temporal patterns and climatic drivers of spring phenology in eight forest communities across the north-south transitional zone of China 被引量:2
6
作者 ZHU Wenbin LU Yu 《Journal of Geographical Sciences》 2025年第1期17-38,共22页
The Qinba Mountains are climatically and ecologically recognized as the north-south transitional zone of China.Analysis of its phenology is critical for comprehending the response of vegetation to climatic change.We r... The Qinba Mountains are climatically and ecologically recognized as the north-south transitional zone of China.Analysis of its phenology is critical for comprehending the response of vegetation to climatic change.We retrieved the start of spring phenology(SOS)of eight forest communities from the MODIS products and adopted it as an indicator for spring phenology.Trend analysis,partial correlation analysis,and GeoDetector were employed to reveal the spatio-temporal patterns and climatic drivers of SOS.The results indicated that the SOS presented an advance trend from 2001 to 2020,with a mean rate of−0.473 d yr^(−1).The SOS of most forests correlated negatively with air temperature(TEMP)and positively with precipitation(PRE),suggesting that rising TEMP and increasing PRE in spring would forward and delay SOS,respectively.The dominant factors influencing the sensitivity of SOS to climatic variables were altitude,forest type,and latitude,while the effects of slope and aspect were relatively minor.The response of SOS to climatic factors varied significantly in space and among forest communities,partly due to the influence of altitude,slope,and aspect. 展开更多
关键词 spring phenology climatic drivers altitude forest communities lag effect Qinba Mountains
原文传递
Optimization method of conditioning factors selection and combination for landslide susceptibility prediction 被引量:2
7
作者 Faming Huang Keji Liu +4 位作者 Shuihua Jiang Filippo Catani Weiping Liu Xuanmei Fan Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期722-746,共25页
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c... Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle. 展开更多
关键词 Landslide susceptibility prediction Conditioning factors selection Support vector machine Random forest Rough set Artificial neural network
在线阅读 下载PDF
Estimating area,standing carbon stock,and potential carbon stock of degraded forests in China 被引量:1
8
作者 Xingrong Yan Dongbo Xie +12 位作者 Linyan Feng Chunyan Wu Ram P.Sharma Wenqiang Gao Xiaofang Zhang Hongchao Huang Zhibo Ma Qiao Chen Lifeng Pang Wenwen Wang Qiaolin Ye Shouzheng Tang Liyong Fu 《Forest Ecosystems》 2025年第4期619-629,共11页
With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threat... With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality. 展开更多
关键词 Degraded forest evaluation Degree of degradation Standing carbon stock Potential carbon stock Carbon theoretical space to grow Degraded forest restoration
在线阅读 下载PDF
Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels 被引量:1
9
作者 Ruiqi Shao Peng Lin +2 位作者 Zhenhao Xu Fumin Liu Yilong Liu 《Journal of Earth Science》 2025年第3期1261-1276,共16页
Geological analysis,despite being a long-term method for identifying adverse geology in tunnels,has significant limitations due to its reliance on empirical analysis.The quantitative aspects of geochemical anomalies a... Geological analysis,despite being a long-term method for identifying adverse geology in tunnels,has significant limitations due to its reliance on empirical analysis.The quantitative aspects of geochemical anomalies associated with adverse geology provide a novel strategy for addressing these limitations.However,statistical methods for identifying geochemical anomalies are insufficient for tunnel engineering.In contrast,data mining techniques such as machine learning have demonstrated greater efficacy when applied to geological data.Herein,a method for identifying adverse geology using machine learning of geochemical anomalies is proposed.The method was identified geochemical anomalies in tunnel that were not identified by statistical methods.We by employing robust factor analysis and self-organizing maps to reduce the dimensionality of geochemical data and extract the anomaly elements combination(AEC).Using the AEC sample data,we trained an isolation forest model to identify the multi-element anomalies,successfully.We analyzed the adverse geological features based the multi-element anomalies.This study,therefore,extends the traditional approach of geological analysis in tunnels and demonstrates that machine learning is an effective tool for intelligent geological analysis.Correspondingly,the research offers new insights regarding the adverse geology and the prevention of hazards during the construction of tunnels and underground engineering projects. 展开更多
关键词 adverse geology TUNNELS geochemical anomalies machine learning Isolation Forest dimensional reduction
原文传递
SiM:Satellite Image Mixed Pixel Deforestation Analysis in Optical Satellite for Land Use Land Cover Application 被引量:1
10
作者 Priyanka Darbari Ankush Agarwal Manoj Kumar 《Journal of Environmental & Earth Sciences》 2025年第2期228-247,共20页
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell... Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas. 展开更多
关键词 Amazon Forest Mixed Pixel Problem Band Math SEGMENTATION CLUSTERING
在线阅读 下载PDF
Coastal ozone dynamics and formation regime in Eastern China:Integrating trend decomposition and machine learning techniques 被引量:1
11
作者 Lei Tong Zhuoliang Gu +8 位作者 Xuchu Zhu Cenyan Huang Baoye Hu Yasheng Shi Yang Meng Jie Zheng Mengmeng He Jun He Hang Xiao 《Journal of Environmental Sciences》 2025年第9期597-612,共16页
Machine-learning is a robust technique for understanding pollution characteristics of surface ozone,which are at high levels in urban China.This study introduced an innovative approach combining trend decomposition wi... Machine-learning is a robust technique for understanding pollution characteristics of surface ozone,which are at high levels in urban China.This study introduced an innovative approach combining trend decomposition with Random Forest algorithm to investigate ozone dynamics and formation regimes in a coastal area of China.During the period of 2017–2022,significant inter-annual fluctuations emerged,with peaks in mid-2017 attributed to volatile organic compounds(VOCs),and in late-2019 influenced by air temperature.Multifaceted periodicities(daily,weekly,holiday,and yearly)in ozone were revealed,elucidating substantial influences of daily and yearly components on ozone periodicity.A VOC-sensitive ozone formation regime was identified,characterized by lower VOCs/NO_(x) ratios(average=0.88)and significant positive correlations between ozone and VOCs.This interplay manifested in elevated ozone duringweekends,holidays,and pandemic lockdowns.Key variables influencing ozone across diverse timescaleswere uncovered,with solar radiation and temperature driving daily and yearly ozone variations,respectively.Precursor substances,particularly VOCs,significantly shaped weekly/holiday patterns and long-term trends of ozone.Specifically,acetone,ethane,hexanal,and toluene had a notable impact on the multi-year ozone trend,emphasizing the urgency of VOC regulation.Furthermore,our observations indicated that NO_(x) primarily drived the stochastic variations in ozone,a distinguishing characteristic of regions with heavy traffic.This research provides novel insights into ozone dynamics in coastal urban areas and highlights the importance of integrating statistical and machinelearning methods in atmospheric pollution studies,with implications for targeted mitigation strategies beyond this specific region and pollutant. 展开更多
关键词 Time series decomposition Random forest VOC-sensitive Long-term trend Port area
原文传递
Machine learning of pyrite geochemistry reconstructs the multi-stage history of mineral deposits 被引量:1
12
作者 Pengpeng Yu Yuan Liu +5 位作者 Hanyu Wang Xi Chen Yi Zheng Wei Cao Yiqu Xiong Hongxiang Shan 《Geoscience Frontiers》 2025年第3期81-93,共13页
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite... The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits. 展开更多
关键词 Machine learning Random forest Support vector machine PYRITE Multi-stage genesis Keketale deposit
在线阅读 下载PDF
Effects of bamboo invasion on forest structures and diameter–height allometries 被引量:1
13
作者 Ming Ouyang Anwar Eziz +8 位作者 Shuli Xiao Wenjing Fang Qiong Cai Suhui Ma Jiangling Zhu Qingpei Yang Jinming Hu Zhiyao Tang Jingyun Fang 《Forest Ecosystems》 2025年第1期38-45,共8页
Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the dis... Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion. 展开更多
关键词 Moso bamboo Forest structure Stand density DBHHeight allometry Scaling exponent Wetness index
在线阅读 下载PDF
Akkermansia muciniphila isolated from forest musk deer ameliorates diarrhea in mice via modification of gut microbiota 被引量:1
14
作者 Yan Deng Yan Wang +4 位作者 Ying Liu Xiaoli Yang Hai Zhang Xiaochang Xue Yi Wan 《Animal Models and Experimental Medicine》 2025年第2期295-306,共12页
Background:The forest musk deer,a rare fauna species found in China,is famous for its musk secretion which is used in selected Traditional Chinese medicines.However,over-hunting has led to musk deer becoming an endang... Background:The forest musk deer,a rare fauna species found in China,is famous for its musk secretion which is used in selected Traditional Chinese medicines.However,over-hunting has led to musk deer becoming an endangered species,and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis.Accumulating evidence has demonstrated that Akkermannia muciniphila(AKK)is a promising probiotic,and we wondered whether AKK could be used as a food additive in animal breeding pro-grammes to help prevent intestinal diseases.Methods:We isolated one AKK strain from musk deer feces(AKK-D)using an im-proved enrichment medium combined with real-time PCR.After confirmation by 16S rRNA gene sequencing,a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability,simulated gas-trointestinal fluid tolerance,acid and bile salt resistance,self-aggregation ability,hy-drophobicity,antibiotic sensitivity,hemolysis,harmful metabolite production,biofilm formation ability,and bacterial adhesion to gastrointestinal mucosa.Results:The AKK-D strain has a probiotic function similar to that of the standard strain in humans(AKK-H).An in vivo study found that AKK-D significantly amelio-rated symptoms in the enterotoxigenic Escherichia coli(ETEC)-induced murine diar-rhea model.AKK-D improved organ damage,inhibited inflammatory responses,and improved intestinal barrier permeability.Additionally,AKK-D promoted the reconsti-tution and maintenance of the homeostasis of gut microflora,as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae,Muribaculum,and unclas-sified f_Lachnospiaceae compared with the diarrhea model mice.Conclusion:Taken together,our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding,although further extensive system-atic research is still needed. 展开更多
关键词 Akkermansia muciniphila DIARRHEA enterotoxigenic Escherichia coli forest musk deer gut microbiota
在线阅读 下载PDF
Modeling of Spring Phenology of Boreal Forest by Coupling Machine Learning and Diurnal Temperature Indicators 被引量:1
15
作者 DENG Guorong ZHANG Hongyan +3 位作者 HONG Ying GUO Xiaoyi YI Zhihua EHSAN BINIYAZ 《Chinese Geographical Science》 2025年第1期38-54,共17页
The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and... The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology. 展开更多
关键词 spring phenology diurnal temperature machine learning future climate scenarios boreal forest
在线阅读 下载PDF
Tree growth and mortality of secondary evergreen broadleaved and temperate coniferous forests and their drivers along elevation gradients in subtropical mountain of China 被引量:1
16
作者 Zongren Li Wenjun Lin +3 位作者 Zhijie Guan Jinlin Zhang Shipin Chen Weibin You 《Journal of Forestry Research》 2025年第2期137-148,共12页
Over the past decades,the expansion of natu-ral secondary forests has played a crucial role in offsetting the loss of primary forests and combating climate change.Despite this,there is a gap in our understanding of ho... Over the past decades,the expansion of natu-ral secondary forests has played a crucial role in offsetting the loss of primary forests and combating climate change.Despite this,there is a gap in our understanding of how tree species’growth and mortality patterns vary with eleva-tion in these secondary forests.In this study,we analyzed data from two censuses(spanning a five-year interval)conducted in both evergreen broadleaved forests(EBF)and temperate coniferous forests(TCF),which have been recovering for half a century,across elevation gradients in a subtropical mountain region,Mount Wuyi,China.The results indicated that the relative growth rate(RGR)of EBF(0.028±0.001 cm·cm^(-1)·a^(-1))and the mortality rate(MR)(20.03%±1.70%)were 27.3%and 16.4%higher,respec-tively,than those of TCF.Interestingly,the trade-off between RGR and MR in EBF weakened as elevation increased,a trend not observed in TCF.Conversely,TCF consistently showed a stronger trade-off between RGR and MR compared to EBF.Generalized linear mixed models revealed that ele-vation influences RGR both directly and indirectly through its interactions with slope,crown competition index(CCI),and tree canopy height(CH).However,tree mortality did not show a significant correlation with elevation.Additionally,DBH significantly influenced both tree growth and mortal-ity,whereas and CH and CCI had opposite effects on tree growth between EBF and TCF.Our study underscores the importance of elevation in shaping the population dynamics and the biomass carbon sink balance of mountain forests.These insights enhance our understanding of tree species’life strategies,enabling more accurate predictions of forest dynamics and their response to environmental changes. 展开更多
关键词 Trade-offs Generalized linear mixed models(GLMM) Remote sensing Secondary forest Mount Wuyi
在线阅读 下载PDF
Analysis of Influencing Factors of Academic Warning in Higher Vocational Colleges Based on the Importance of Machine Learning Features and Paths to Improve Learning Ability 被引量:1
17
作者 Meimei Huang Lei Zhang Xifeng Fan 《Journal of Contemporary Educational Research》 2025年第5期75-80,共6页
The traditional academic warning methods for students in higher vocational colleges are relatively backward,single,and have many influencing factors,which have a limited effect on improving their learning ability.A da... The traditional academic warning methods for students in higher vocational colleges are relatively backward,single,and have many influencing factors,which have a limited effect on improving their learning ability.A data set was established by collecting academic warning data of students in a certain university.The importance of the school,major,grade,and warning level for the students was analyzed using the Pearson correlation coefficient,random forest variable importance,and permutation importance.It was found that the characteristic of the major has a great impact on the academic warning level.Countermeasures such as dynamic adjustment of majors,reform of cognitive adaptation of courses,full-cycle academic support,and data-driven precise intervention were proposed to provide theoretical support and practical paths for universities to improve the efficiency of academic warning and enhance students’learning ability. 展开更多
关键词 Academic warning Pearson correlation coefficient Random forest variable importance Permutation importance
在线阅读 下载PDF
Damage prediction of rear plate in Whipple shields based on machine learning method 被引量:1
18
作者 Chenyang Wu Xiangbiao Liao +1 位作者 Lvtan Chen Xiaowei Chen 《Defence Technology(防务技术)》 2025年第8期52-68,共17页
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh... A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements. 展开更多
关键词 Damage prediction of rear plate Cumulative effect of debris cloud Whipple shield Machine learning Random forest
在线阅读 下载PDF
Dynamic changes and driving factors of ecosystem service value(ESV)in the Northeast Forest Belt of China 被引量:1
19
作者 Jiao Shi Yujuan Gao Yuyou Zou 《Journal of Forestry Research》 2025年第2期167-186,共20页
The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ec... The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth. 展开更多
关键词 Ecosystem service value(ESV) Northeast Forest Belt of China Equivalent factor method Geographic detectors Driving factors
在线阅读 下载PDF
Unmasking Social Robots’Camouflage:A GNN-Random Forest Framework for Enhanced Detection
20
作者 Weijian Fan Chunhua Wang +1 位作者 Xiao Han Chichen Lin 《Computers, Materials & Continua》 SCIE EI 2025年第1期467-483,共17页
The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection h... The proliferation of robot accounts on social media platforms has posed a significant negative impact,necessitating robust measures to counter network anomalies and safeguard content integrity.Social robot detection has emerged as a pivotal yet intricate task,aimed at mitigating the dissemination of misleading information.While graphbased approaches have attained remarkable performance in this realm,they grapple with a fundamental limitation:the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles.To unravel this challenge and thwart the camouflage tactics,this work proposed an innovative social robot detection framework based on enhanced HOmogeneity and Random Forest(HORFBot).At the core of HORFBot lies a homogeneous graph enhancement strategy,intricately woven with edge-removal techniques,tometiculously dissect the graph intomultiple revealing subgraphs.Subsequently,leveraging the power of contrastive learning,the proposed methodology meticulously trains multiple graph convolutional networks,each honed to discern nuances within these tailored subgraphs.The culminating stage involves the fusion of these feature-rich base classifiers,harmoniously aggregating their insights to produce a comprehensive detection outcome.Extensive experiments on three social robot detection datasets have shown that this method effectively improves the accuracy of social robot detection and outperforms comparative methods. 展开更多
关键词 Social robot detection graph neural networks random forest HOMOPHILY heterophily
在线阅读 下载PDF
上一页 1 2 239 下一页 到第
使用帮助 返回顶部